(1 Lec, 1 2-hr Lab) Introductory experience in analysis, synthesis, and design. Teamwork and project required. Pre: high school physics or consent.
(1 Lec, 2 2-hr Lab) Introductory experience in communication, presentation, professional ethics, social responsibility, engineering economics, quality control, and computer-aided drafting. Teamwork and project required. Pre: PHYS 170.
Dynamics of particles and rigid bodies; force, acceleration, impulse-momentum, work-energy. ME majors only. A-F only. Pre: C or better in CEE 270; MATH 244 (or concurrent) or MATH 253A (or concurrent). (Cross-listed as CEE 271)
(3 Lec, 1 Discussion) Basic laws, closed and open systems. Work, heat, concept of entropy. Properties of pure simple substances. Ideal gases. Introduction to power and refrigeration cycles. Pre: grade of C or better in all of CHEM 162 (or CHEM 171 or CHEM 181A), PHYS 170 and MATH 244 (or MATH 253A).
(3 Lec, 1 2-hr Lab) Incompressible and compressible ideal fluids, effects of viscosity. Similitude, boundary layer flow. Measurement techniques in thermodynamics and fluid mechanics. Hands-on experience with instrumentation. Open-ended design of thermofluid systems. Pre: grade of C or better in all of 311 and CEE 271 (or ME 271).
Electronic, atomic, and crystalline structure of materials and their effect on the mechanical, electrical, optical, and magnetic properties of engineering metals, ceramics, polymers, and composites. Pre: grade of C or better in all of CHEM 162 (or CHEM 171 or CHEM 181A), MATH 242 (or MATH 252A), and PHYS 170.
(3 Lec, 1 2-hr Lab) Manufacturing components. Energy requirements for manufacturing methods. Manufacturing methods to obtain components with desired size/shape/properties. Conduct tension/ compression tests, cold rolling, welding, casting statistical process control, programming, and milling using a CNC machine. A-F only. Pre: 331 or consent.
(1 Lec, 1 2-hr Lab) Manufacturing laboratory: tension/ compression tests, cold rolling, welding, casting, statistical process control, programming and milling using a CNC machine. A-F only. Pre: 341 (or concurrent) or consent.
Numerical solutions for algebraic and transcendental equations, simultaneous linear algebraic equations, integration and differentiation; integration of ordinary differential equations. Engineering applications. Pre: grade of C or better in all of EE 160 (or EE 110 or ICS 111), MATH 244 (or MATH 253A), and MATH 302 (or MATH 307).
Stress, strain and constitutive relations for elastic solids. Design of shafts, beams, columns and cylinders. Failure theories, statically indeterminate systems. Pre: grade of C or better in all of CEE 270 and MATH 244 (or MATH 253A) and MATH 302 (or MATH 307 or BE 350).
Design, analysis, and selection of machine components: shafts, screws, fasteners, welds, rolling contact bearings, journal bearings, gears, clutches, brakes, belts, and roller chains. Pre: 213, and either 371 or CEE 370.
Velocity and acceleration analysis of planar mechanisms; kinematic synthesis of linkages, cams, and gears; static and dynamic force analysis of mechanisms; balancing of machinery. Pre: CEE 271 or ME 271 (C or better), MATH 244 (or MATH 253A) and either MATH 302 or MATH 307
(3 Lec, 1 2-hr. Lab) Lumped-parameter modeling of dynamic systems. Methods of analysis, including transform techniques. Time and frequency response. Feedback control. Engineering instrumentation. Data acquisition. Dynamic measurements. Design and testing. Pre: grade of C or better in all of CEE 271 (or ME 271) and MATH 302 (or MATH 307).
(1 Lec, 1 2-hr Lab) Analysis, design, fabrication, testing and characterization of engineering instrumentation. Computer-based data acquisition methods. Techniques and procedures associated with carrying out dynamic measurements within the constraints of cost, time and accuracy. Pre: one of 360, MATH 407, or PHYS 305 (or concurrent for any); and 375 (or concurrent).
Applications of ordinary differential equations, Laplace transform, vector field theory, matrices, line integrals. Pre: MATH 244 (or MATH 253A), and MATH 302 (or MATH 307).
Basic computational fluid dynamics; four important partial differential equations; introduction to finite element method: Interpolation and Galerkin method; finite element method for transport phenomena; some algorithms for parallel computing. A-F only. Pre: 422 (or concurrent ), and either 360, MATH 407 or PHYS 305; or consent.
Gas mixtures, generalized thermodynamic relationships, combustion and thermochemistry, chemical equilibrium, power and refrigeration cycles. Pre: grade of C or better in 311.
Principles, design and analysis of practical thermal systems. Engineering applications. Valve, compressor, condenser and evaporator technologies. System integration and control. Thermal loads and thermal comfort. Pre: 422 (or concurrent). (Fall only)
Principles, performance, and design of gas turbine power plants and propulsion systems. Pre: 422 (or concurrent).
The space environment (vacuum, neutral, radiation, and plasma); motion in gravitational fields; orbit transfers; Earth-satellite operations; rocketry; propulsion analysis and performance; reentry dynamics; interplanetary trajectories; attitude dynamics and stabilization. A-F only. Pre: consent.
(3 Lec, 1 2-hr Lab) Conduction, convection, and radiation. Measurement techniques in heat transfer. Hands-on experience with instrumentation. Open-ended design of thermofluid systems. Pre: 322.
Elementary mass diffusion; diffusion in a stationary medium; diffusion in a moving medium; low and high mass transfer theories; simultaneous heat and mass transfer; condensation, evaporation, and boiling; transpiration cooling; species boundary layers; engineering and design of heat and mass exchangers; current refrigerants and environmental regulations. A-F only. Pre: 422 or consent.
One-dimensional compressible flow involving change of area, friction, heat transfer. Normal and oblique shocks. Prandtl-Meyer flow. Application to nozzles, diffusers, airfoils. Pre: 322.
To introduce concepts in the thermal management of electronics, and to develop sound technical tools to approach modern electronic packaging and cooling applications. A-F only. Pre: 422 or consent.
Scaling methods and optimization under global constraints; multi-scale optimal design of mechanical, thermal, and natural systems; effectiveness of heat, fluid, and convective trees; theoretical design optimization of manmade and natural power systems; analysis of time dependent structures. A-F only. Pre: 371 and 422, or consent.
Analysis of component failures due to imperfections, fatigue, brittle fracture, wear, corrosion, bending, impact, and overload. Fracture mechanics. Case studies. Pre: 331 or consent.
Methodology for the selection of materials for mechanical applications to prevent mechanical failure and environmental degradation. Design considerations associated with the use of metals, ceramics, polymers, and composites. Pre: 341 and 371 (or CEE 370).
(1 Lec, 2 2-hr Lab) Common experimental techniques in materials testing and research: x-ray diffraction, optical and electron microscopy, thermal and mechanical properties, electrochemical methods—theory and hands-on experience. Pre: 341 and consent.
Basics of corrosion processes and emphasis on corrosion control. Thermodynamics and kinetics of corrosion, metal alloys and their behavior, corrosion control techniques (cathodic protection, anodic protection, coatings, and inhibitors). Pre: 341.
(2 Lec, 1 2-hr Lab) Introduction to anisotropic materials, advanced manufacturing techniques for composite and intelligent materials, joining of composites, thin film processing and stereolithography, computer aided manufacturing and rapid prototyping, manufacturing process optimization, open-ended manufacturing projects. A-F only. Pre: 341, 342, and senior standing; or consent.
(3 Lec) Tools and techniques of micro- and nanotechnology in design, modeling, simulations, analysis, fabrication, testing and characterization; nano-materials, nano-structures, nano-composites, nano-coating, nano-optics, nano-electronics and nano-biotechnology. A-F only. Pre: senior standing or consent.
Analysis/ design of feedback systems. Compensator design via root locus and Bode analysis. Routh/Nyquist stability. State space representation and introduction to MIMO formulation. Controllability/observability. Application to physical dynamic systems such as industrial robots. Pre: 375 or EE 315 or consent.
Principles and design methods for autonomous systems. Pre: senior standing.
Energy conversion and its impact on the environment. Conventional, hydroelectric, nuclear fission and fusion, solar, wind, ocean, geothermal, and biomass power; energy storage, transmission and conservation. Pre: 322, 411, and 422 (or concurrent); or consent.
Nuclear reactor principles. Reactor heat transfer, heat generation and removal. Design and analysis of reactor power systems and plants. Pre: 411 (or consent) and 422.
(1-3 hr Lab) Techniques of experimental stress analysis: strain and deflection measurement of beams and shafts, strain to stress conversion, principal and maximum shearing stresses, failure in biaxial stress states, stress concentrations, residual stresses, buckling, creep, electrical resistance strain gages, brittle coatings, photoelastic methods, transducers. A-F only. Pre: 371 and departmental approval.
Response of machines and systems to transient and periodic excitation. Vibration isolation and transmissibility. Modal analysis of multi-degree-of-freedom systems. Applications to design. Pre: 371, 375; or consent.
Plane and spherical acoustic waves. Transmission, reflection, radiation, and absorption. Near and far fields, radiation patterns. Applications to noise control. Instruments. Pre: 375, EE 211; or consent.
Measurement techniques in thermodynamics, fluid mechanics, and heat transfer. Hands-on experience with instrumentation. Open-ended design of thermofluid systems. Contemporary engineering ethics issues. Final report and presentation are required. A-F only. Pre: 422 (or concurrent).
(2 1-hr Lec, 2 2-hr Lab) Engineering ethics, engineering design methodology, design process, project planning, decision making, materials selection, economic analysis, quality control, finite element analysis, initiation of an open-ended design project. A-F only. Pre: 322, 341, 372, and 375; or consent.
(1 Lec, 2 2-hr Lab) Continuation of design project initiated in ME 481. Extension of conceptual design to final design and a prototype. Analysis, materials and part selection, synthesis of working systems. Computer-aided design and finite element modeling. Manufacturing specifications, shop drawings, and a final report are required. A-F only. Pre: 481.
Specialized topics in thermosciences, mechanics, materials, systems, or design. Pre: consent.
Specialized topics in thermosciences, mechanics, materials, systems, or design. Pre: consent.
Investigation of advanced problems in mechanical engineering design or development. Student must find faculty sponsor before registering. A-F only. Pre: senior standing.
Analysis of principles of operation of renewable energy systems, and its interactions with sustainability. Fundamentals of renewable energy production, storage, and distribution. Pre: consent.
Introduction to general principles of classical thermodynamics. Main topics include equilibrium conditions, thermodynamic relations, Legendre transformations, Maxwell relations, stability of thermodynamic systems, phase transitions, and critical phenomena. Graduate students only. A-F only. Pre: 311 or consent.
Fundamentals of statistical thermodynamics. Main topics include entropy, Boltzmann law, thermodynamic driving forces, statistical mechanics, chemical equilibria, solutions and mixtures, and applications of statistical thermodynamics in biology, chemistry, physics, and nanoscience. A-F only. Pre: 311 or 611.
Advanced topics in aerodynamics, two- and three-dimensional wing theory, slender-body theory, lifting surface methods, vortex and wave drag, analytical and numerical methods, for computing unsteady aerodynamic behavior and introduction to flightdynamics. A-F only. Pre: 322 and 626, or consent.
Two-phase flow pattern and flow pattern maps; two-phase flow models (homogeneous, separate, drift flux, annular); laminar and turbulent film condensations; boiling incipience; pool boiling heat transfer; flow boiling heat transfer; critical heat flux (CHF). A-F only. Pre: 422 (or equivalent) or consent.
Review of Newtonian fluid mechanics. Blood rheology and flow in elastic tubes. Murray’s Law and pulsatile flow propagation. Microcirculation dynamics and biological transport. Aquatic movement and comparative biological examples. Pre: 322 and 422, or consent.
Heat transfer in laminar and turbulent boundary layers. Analogy between heat, momentum, mass transfer. Pre: 422 and 626.
Introduction to fundamental understanding of fluid mechanics and transport phenomena at micro-nanoscale; electrokinetics; chemical separation; colloids and emulsions; biophysics; micro-nanofabrication.
Integration of ordinary differential equations. Finite difference solutions of partial differential equations with applications to conduction and convection. Introduction to finite element methods. Pre: 422, and either MATH 190 or EE 160.
Formulation and properties of the Navier-Stokes equations; exact solutions; creeping flows; lubrication theory; laminar boundary layers; laminar stability, and transition to turbulence; turbulent boundary layers. Pre: 322.
Vector and tensor operations. Constutive equations. Generalized Newtonian fluids and linear viscoelastic fluids. Rheometry and experiments. Flow of suspensions. Advanced topics and rheology of polymers, food products, biomaterials and asphalt, laboratories. Pre: 626 or consent.
Application of electrochemical theory and materials science to corrosion and oxidation reactions. Effect of environment, especially marine. Cathodic protection, coatings, inhibitors, treatment of water systems. Pre: 331.
Thermodynamics of cells, electrode kinetics, mass transfer by migration and diffusion, microelectrode techniques, forced convection, impedance, doublelayer structure, and absorbed intermediates in electrode processes. Pre: consent.
Exploration of simple, cost-effective alternatives in medicine through different stages of concept generation, design analysis, and prototype validation and investigation of their commercialization potential. Graduate students only. Pre: 341 or consent.
Introduction to composites; anisotropic elasticity and laminate theory; hygrothermal effects; composite beams, columns, rods, plates, and shells; energy method; failure theories; joining of composites, computer-aided design in composites. Pre: 371 or consent.
Science and applications of nanotechnology. Synthesis of nanostructures; nanoscale structure characterization by electron microscopy and Raman spectroscopy; electrical, thermal, and mechanical properties of nanostructures; fabrication of nanodevices; energy, environmental, and biological applications of nanomaterials. A-F only.
Fundamental and modern concepts of colloid and surface science. Main topics include surface thermodynamics, capillarity and wetting phenomena, surface forces, surfactants, and particles. Pre: 311 or consent.
Linear optimal feedback control, discrete time optimal control, fundamentals of adaptive control, application to motion and force control of robot arms and manipulators. Pre: 451, EE 351; or consent.
Working principles of all major fuel cell types; fundamentals of proton exchange membrane (PEM) fuel cells; state-of-the-art theoretical models and diagnostic technologies for PEM fuel cells. A-F only. Pre: 422 (or equivalent) or consent.
Cartesian tensors in mechanics, coordinate transformations, analysis of stress and strain, principal values, invariants, equilibrium and compatibility equations, constitutive relations, field equations. Problems in elasticity. A-F only. Recommended: 371 or CEE 370, or consent. (Cross-listed as CEE 671)
Introduction to finite element analysis and design in mechanical engineering. Applications to machine design, vibrations, elasticity, heat transfer. Pre: 360, 371; or consent.
Lecture on rigidbody dynamics. Topics include: dynamical systems; motion representation and constraints; Newtonian mechanics; Lagrangian mechanics; Hamilton’s principle; stability analysis; introduction to multibody dynamics. Pre: 375 or equivalent, or consent.
An interdisciplinary (JD-MBA) course examining legal, business, and technology issues related to building high growth companies. Student teams develop company feasibility reports and skills necessary to advise or build high growth businesses. Recommended: 531. Law students only. (Once a year) (Cross-listed as LAW 560)
Current problems in all branches of mechanical engineering. All graduate students are required to attend; registrants are expected to present talks. Pre: graduate standing.
Highly specialized topics in thermosciences, mechanics, materials, system, or design. Pre: consent.
Directed study on subject of mutual interest to student and a staff member. Student must find faculty sponsor before registering. Repeatable unlimited times. Pre: graduate standing.
Thesis for degree of MS in mechanical engineering. Repeatable unlimited times. Pre: admission to candidacy and consent of thesis advisor.
Student assists in undergraduate classroom and/or project instruction under the direction and close supervision of faculty member. CR/NC only. Pre: admission to PhD candidacy or consent.
Research for doctoral dissertation. Repeatable unlimited times. Pre: candidacy for PhD in mechanical engineering.