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Coral reef managers currently face the challenge of mitigating global stressors
by enhancing local ecological resilience in a changing climate. Effective herbivore
management is one tool that managers can use in order to maintain resilience in the
midst of severe and frequent bleaching events. One recommended approach is to
establish networks of herbivore management areas (HMAs), which prohibit the take
of herbivorous reef fishes. However, there is a need to develop design principles to
guide planning and implementation of these HMAs as a resilience-building tool. We
refine available guidance from fully protected marine protected area (MPA) networks
and developed a set of 11 biophysical design principles specifically for HMAs. We then
provide a case study of how to apply these principles using the main Hawaiian Islands.
We address site-specific considerations in terms of protecting habitats, including
ecologically critical areas, incorporating connectivity, and addressing climate and local
threats. This synthesis integrates core marine spatial planning concepts with resilience-
based management and provides actionable guidance on the design of HMAs. When
combined with social considerations, these principles will support spatial planning in
Hawai‘i and could guide the future design of HMA networks globally.

Keywords: coral bleaching, marine protected areas, herbivore management, systematic conservation planning,
coral reef resilience

INTRODUCTION

Coral reefs are among the most diverse and complex ecosystems in the world and provide
ecosystem services to millions of coastal residents in nearly 100 nations (Moberg and Folke,
1999), yet are the marine ecosystem most vulnerable to climate change (Hughes et al., 2017b).
Climate change is adversely affecting coral reefs in multiple ways including sea level rise,
acidification, and ocean warming, which can act in concert with local stressors. For example,
climate-induced coral bleaching events together with local stressors (e.g., overfishing, land-
based pollution, and coastal development) can result in potential for regime shifts from

Frontiers in Marine Science | www.frontiersin.org 1 March 2019 | Volume 6 | Article 98

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2019.00098
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2019.00098
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2019.00098&domain=pdf&date_stamp=2019-03-19
https://www.frontiersin.org/articles/10.3389/fmars.2019.00098/full
http://loop.frontiersin.org/people/601182/overview
http://loop.frontiersin.org/people/306183/overview
http://loop.frontiersin.org/people/530151/overview
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00098 March 15, 2019 Time: 16:15 # 2

Chung et al. Building Coral Reef Resilience

coral-dominated to macroalgae-dominated systems, leading
to a loss of biodiversity as well as ecosystem goods and
services (Ateweberhan et al., 2013; Graham et al., 2013;
Hoegh-Guldberg et al., 2017).

Enhancing the ecological resilience of coral reefs has become
a central focus for managers worldwide as the frequency and
severity of climate-induced impacts increases (Baker et al., 2008;
Van Hooidonk et al., 2016; Hughes et al., 2017a). Improving coral
reef resilience relies on fostering two central components: the
ability of coral reefs to both resist and recover from ecological
disturbances (Holling, 1973). To achieve increased resilience
through conservation planning, managers must reduce local
stressors while fostering key resilience processes throughout their
jurisdiction, known as resilience-based management (Graham
et al., 2013; Anthony et al., 2015).

Herbivory is a critical ecological process that underpins the
ability of corals to recover from disturbances (Bellwood et al.,
2004) and resist regime shifts to algal-dominated reef states
(Graham et al., 2013). Herbivores prevent algal overgrowth (e.g.,
thick turfs and macroalgae) that can inhibit coral settlement,
survival, thereby reducing reef structural complexity (Hixon,
2015). Increasing herbivore biomass has also been demonstrated
as a critical tool for maintaining ecosystem function and
resilience leading to increases in fish grazing, crustose coralline
algae (CCA), coral recruitment and cover (Mumby, 2006; Hughes
et al., 2007; Smith et al., 2010).

Herbivore management areas (HMAs) are spatially managed
areas where the take of herbivorous fishes and invertebrates
(e.g., sea urchins) is prohibited while other extractive and non-
extractive uses are allowed. Increasing herbivorous fish biomass,
particularly through the use of spatial networks have been
dominant recommendations of resilience-based management
(McLeod et al., 2009; Graham et al., 2013; Green et al., 2014;
Chung et al., 2019). Herbivores are good candidates for spatial
strategies because of their high site fidelity (Howard et al.,
2013) and in previous usage spatial management and herbivory
showed a strong connection to shaping benthic communities
(Graham et al., 2011). Herbivory maintains space for coral recruit
settlement, a key process for coral recovery after disturbances
and bleaching events (Hughes, 1994; McClanahan, 2000; Mumby
et al., 2007). Thus, HMAs have several qualities that suggest
they would be an effective tool to prevent ecosystem shifts and
increase the resilience of coral reef ecosystems (McClanahan
et al., 2012; Graham et al., 2013; Mumby et al., 2014;
Bozec et al., 2016).

Consecutive and unprecedented mass coral bleaching events
in 2014 and 2015 in the main Hawaiian Islands ignited a
new conversation about how local managers can mitigate
the effects of climate change. Exposure and severity of
temperature stress during these two consecutive events was
variable across the state, with some coastlines far exceeding
levels previously observed (Figure 1). For example in 2015,
areas along the west coast of Hawai‘i island (known as
west Hawai‘i) reached 16 degree heating weeks (DHW),
which is double the level of accumulated temperature stress
expected to trigger widespread bleaching and significant
coral mortality (NOAA Coral Reef Watch, 2015). Following

these bleaching events, the average coral loss along west
Hawai‘i was 50% (Kramer et al., 2016). Substantial mortality
was also reported around the islands of Maui and O‘ahu.
Subsequently, concerns about the resilience of coral reefs in
Hawai‘i spurred local resource managers to consider long-term
intervention measures.

In Hawai‘i, the department of land and natural resources
(DLNR) division of aquatic resources (DAR) is responsible for
“managing, conserving, and restoring the state’s aquatic resources
and ecosystems for present and future generations” (Department
of Land and Natural Resources [DLNR], 2018). In 2016, DAR
initiated the development of The Hawai‘i Coral Bleaching
Recovery Plan, which evaluated alternative management options
following the major bleaching events through a combination of a
systematic literature review and global and local expert opinion.
Establishing a network of HMAs was identified as the top-ranked
intervention based on its potential to promote coral recovery and
management effectiveness (Chung et al., 2019).

Currently, there are 84 existing marine protected areas
(MPAs) across the main Hawaiian Islands. However, only a
few of these areas provide full protection for herbivorous
fishes, most provide only partial or no herbivore protection,
and only one (the Kahekili HMA on Maui) was specifically
designed to manage herbivores (Friedlander et al., in press)
(Figure 2). Furthermore, the existing MPAs were not designed
as an ecologically connected network, but rather were built
piecemeal and is reflective of various needs to manage user
conflict, safeguard protected species, or on the wishes of local
communities (Friedlander et al., 2014).

However, the success of some individual MPAs (Friedlander
et al., 2007a,b; Williams et al., 2016) indicates that a network
of HMAs could be a useful tool for managing herbivores and
coral reef resilience in Hawai‘i. For example, the existing Marine
Life Conservation Districts, where fishing and consumptive uses
are limited (and in many completely prohibited), generally
have higher herbivore biomass, larger overall fish size, and
higher biodiversity than adjacent areas of similar habitat quality
(Friedlander et al., 2007a,b). Furthermore, in the first 6 years
of herbivore management at the Kahekili HMA, the single
example of an existing HMA in the main Hawaiian Islands, mean
parrotfish and surgeonfish biomass increased by 139 and 28%,
respectively, macroalgal cover remained low, CCA (a settlement
habitat for coral larvae) increased from 2 to 15%, and coral cover
stabilized from a declining trend (Williams et al., 2016).

Despite global and Hawai‘i-specific recommendations to use
HMAs as a tool for increasing coral reef resilience, there is
currently a lack of practical guidance on how to apply this
theoretical approach. In this study, we identify biophysical
principles for designing a network of HMAs as a climate
adaptation tool. Where design principles are defined as guidelines
that provide specific advice on how to design a MPA network
to achieve its objectives (Green et al., 2013). To demonstrate
how to apply this concept, we use Hawai‘i as a case study to
explore unique place-based factors that could guide site-specific
implementation. This process will guide the future configuration
and placement of HMAs to help build ecological resilience in
Hawai‘i, and could inform similar processes worldwide.
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FIGURE 1 | The maximum degree heating week (DHW) observed in 2014 (A) and 2015 (B) across the main Hawaiian Islands (climate data source: NOAA coral
reef watch).
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FIGURE 2 | The current extent of spatial herbivore management around the main Hawaiian Islands.

MATERIALS AND METHODS

We developed biophysical criteria for designing networks of
HMAs using the following process often applied to design MPA
networks in other tropical marine ecosystems worldwide (e.g., see
Fernandes et al., 2005; Green et al., 2009; Wilson et al., 2011).

First, we defined clear and measurable objectives, which
are necessary to effectively design, monitor and evaluate
MPAs (Botsford et al., 2003; IUCN World Commission on
Protected Areas, 2008). We defined our objectives based on
the scientific literature regarding what HMA networks could
achieve ecologically, and the objectives of The Hawai‘i Coral
Bleaching Recovery Plan. Our objectives for designing a network
of HMAs were to maintain and increase coral reef resilience by
maintaining and/or increasing herbivore biomass, abundance,
and functional diversity.

The next step was to identify design criteria, which provided
specific advice on how to design the HMA network to achieve
its objectives. Typically, MPA networks are designed using
two types of design principles: biophysical principles aimed
at achieving ecological objectives by taking key biological and
physical processes into account; and socioeconomic, cultural
and governance (SECG) principles aimed at maximizing benefits
and minimizing costs to local communities and industries and
aligning with legal, political and institutional requirements (e.g.,
see Fernandes et al., 2005; Green et al., 2009; Wilson et al., 2011).

As a starting point, we adapted biophysical principles for
fully protected, or no-take, MPA networks that aim to rebuild
fish stocks, conserve biodiversity, and mitigate climate impacts
designing networks of HMAs. These biophysical principles were
intended to contribute to a larger design process that includes
incorporating local knowledge, complementing human uses and
values, and adhering to legal and political requirements. Thus
implementation will also require the development of SECG

design principles, which are currently being developed through
a similar process for Hawai’i. Once completed, the biophysical
and SECG design principles can be used in tandem to design the
HMA network to meet multiple ecological and social objectives
(Klein et al., 2008).

We developed biophysical design principles for HMAs by
adapting and refining existing principles for designing networks
of no-take marine MPAs to rebuild fish stocks, conserve
biodiversity, and mitigate climate impacts (McLeod et al., 2009;
Green et al., 2014, 2015). Fully protected MPAs are powerful
tools for enhancing fish stocks within their boundaries and
providing fisheries benefits outside their boundaries (Gaines
et al., 2010; Baskett and Barnett, 2015; Lubchenco and
Grorud-Colvert, 2015). We then adapted and refined the
design guidelines to provide specific criteria for designing
networks of HMAs as a climate change adaptation tool. Design
principles are currently being developed through a similar
process and, once completed, can be used in tandem with the
biophysical principles to design HMA networks. Finally, we
reviewed the best available information regarding the biophysical
environment in Hawai’i to identify how these design criteria
could to be used to design a network of HMAs in the main
Hawaiian Islands.

RESULTS

We developed 11 biophysical principles across five categories to
design a network of HMAs to maintain and increase coral reef
resilience by maintaining and/or increasing herbivore biomass,
abundance, and functional diversity (Table 1). We also provide
specific considerations for applying these principles to design
a network of HMAs in the main Hawaiian Islands based on
local conditions.
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TABLE 1 | Biophysical principles for designing a network of herbivore management areas.

Category Herbivore Management Area Design Principle Considerations in Hawai‘i Hawai‘i Reference/Data
sources

Habitats 1. Protect 20–40% of each type of herbivore habitat
2. Protect at least three examples of each type of
herbivore habitat

Include areas with multiple habitat types that
support multiple herbivore functional groups
(aggregate reef, patch reefs, spur and groove,
rock/boulder, rubble, sand, pavement)

Costa and Kendall, 2016

Critical areas 3. Protect areas with naturally high herbivore
biomass and/or functional diversity

Include areas predicted to have high current
herbivore biomass and functional diversity

Hawai‘i Monitoring and Research
Collaborative, 2018

4. Protect areas likely to have the greatest herbivore
fisheries recovery potential

Include areas predicted to have high potential gain
in resource fish biomass with reduction in fishing
intensity

Stamoulis et al., 2018; Gorospe
et al., 2018

5. Ensure the network includes areas important for
the ecological needs of all post-settlement
life-history stages of herbivores (e.g., nursery,
sheltering, feeding, and spawning grounds)

Include known spawning habitat (e.g., boulders,
7–10 m deep).
Include known nursery grounds as well as juvenile
and adult habitat (e.g., shallow, coastal waters and
deeper reef areas 1–30 m depth)

Schemmel and Friedlander, 2017
Randall, 1961; Friedlander and
Parrish, 1998a; Ortiz and Tissot,
2012; Kane and Tissot, 2017

Connectivity 6. Scale size and spacing of HMAs based on
movement patterns and larval dispersal of
herbivorous species
7. Ensure HMAs are large enough to include
movement patterns of adult and juvenile herbivore
species

Ensure areas cover no less than 1 km of the
coastline to accommodate known home ranges of
large-bodied herbivores, establish multiple areas
per coastline

See Table 2

8. Ensure larval connectivity within the network Areas should replicated within major shores (e.g.,
north, east, south, and west) on each major island
Due to strong physical drivers (e.g., prevailing
currents, wave forcing), space areas appropriately
to the geography and biophysical attributes of the
coastline

Christie et al., 2010; Toonen
et al., 2011; Stamoulis and
Friedlander, 2013
Dollar, 1982; Friedlander and
Parrish, 1998b

Climate considerations 9. Include areas that have withstood ecological
disturbances in the past and/or are more likely to
withstand them in future

Include areas with high water temperature
variability, which that resisted and recovered from
the 2014–2015 bleaching events

Hawai‘i Coral Bleaching
Collaborative, 2018

Spread future climate risk by including areas
stratified evenly across and within islands (i.e.,
across major shores: north, south, east, west)

Salm et al., 2006; Green et al.,
2009; Van Hooidonk et al., 2016

10. Include some areas of high risk of regime shifts
from coral to algae, which would benefit most from
increased protection of herbivores

Prioritize Maui, Moloka‘i, Lana‘i, and west Hawai‘i,
and within these islands, areas that reached >8
degree heating weeks during the 2014–2015 coral
bleaching events

NOAA Coral Reef Watch, 2015

Local threats 11. Avoid areas with unnaturally high levels of
sediment and nutrients (that are beyond the direct
jurisdiction of fisheries managers)

Avoid areas near: (1) high sediment outfalls, (2)
urban effluent, (3) agriculture, (4) golf courses, and
(5) major impervious surfaces (paved roads, etc.)

Lecky, 2016; Wedding et al.,
2018

Pair marine areas adjacent to priority watershed
management areas as identified by the Hawaii
Division of Forestry and Wildlife and other
conservation programs

Sustainable Hawai‘i Initiative,
2018

Habitats
Different herbivore species use different habitats. Thus,
protection of all species and maintenance of the health,
integrity and resilience of the ecosystem can only be achieved
if adequate examples of each major is protected in HMAs
(adapted from Green et al., 2014). Where the percentage of
each habitat to be protected will depend on several factors
including habitat condition, fishing pressure and if there
is additional effective protection (fisheries management)
outside of HMAs (reviewed in Green et al., 2014). Thus to
maximize benefits to fisheries management and biodiversity
in the face of climate change, HMAs should encompass at
least 20–40% of each type of herbivore habitat (e.g., see

Airamé et al., 2003; Fernandes et al., 2005; McLeod et al.,
2009; Green et al., 2014), depending on the local situation
(Green et al., 2014).

In Hawai‘i, it is important to represent habitat heterogeneity
that occurs at multiple scales from individual reefs to the entire
MHI within the network. Spatial pattern metrics that describe
seascape structure and habitat complexity have been used to
describe relationships between habitat structure and reef fish
assemblages (Wedding and Friedlander, 2008; Wedding et al.,
2008, 2011), with more complex seascape structure associated
with greater abundance, species richness, and biomass of reef
fishes. These areas with high habitat heterogeneity should be
a priority to include in HMAs.
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Throughout the MHIs, parrotfish distributions are
significantly correlated with areas of high rugosity, coral
cover, non-turf macroalgae, and CCA (Howard et al., 2009)
and in particular shallow (5–10 m) spur and groove habitat
(Ong and Holland, 2010). Zebrasoma flavescens, a common
surgeonfish, is known to forage in shallow complex reef flat and
boulder habitats (Claisse et al., 2011). Herbivore density is also
highest in shallow, backreef habitat (Friedlander and Parrish,
1998a), whereas biomass shows a negative relationship with
macroalgal cover (Friedlander et al., 2007b). Thus, areas that
have features and a high diversity of habitats used by a range of
herbivorous fishes and functional groups should be prioritized
for inclusion in HMAs (modified from Fernandes et al., 2005;
Green et al., 2009, 2014).

Protection of each type of habitat in at least three widely
separated HMAs will also minimize the risk that all examples
will be adversity impacted by the same disturbance (e.g., mass
coral bleaching or hurricanes: see Green et al., 2014). Thus, if
some protected habitats survive the disturbance, they can act as a
source of larvae to facilitate recovery in other areas.

Critical Areas
Areas that are critical to the life history of herbivores should
be included in the HMA network. These include concentrated
feeding and spawning grounds or areas with ecosystem processes
on which herbivores depend (Green et al., 2014). Herbivores
have been classified into groups based on their functional role as
grazers, scrapers, or browsers, so a combination of their unique
ecological roles will be critical to build resilience (Choat et al.,
2004; Hixon, 2015).

In Hawai‘i, the distribution of herbivorous fishes varies by
habitat regime, which is driven by ecological and biophysical
characteristics (Donovan et al., 2018). In addition, current
herbivore biomass naturally varies considerably across the
archipelago driven by differences in benthic habitat cover,
physical characteristics, and oceanography (Gorospe et al.,
2018). HMAs should be prioritized for inclusion in the HMA
network that have a naturally high diversity of functional groups
and a high herbivore biomass to maximize benefit for coral
reef resilience.

While many species of herbivores are considered overfished in
Hawai‘i, reductions in fishing pressure could result in high gains
in some areas and should be prioritized within the network. There
is strong evidence of overfishing in the MHI when compared with
the neighboring, unpopulated northwestern Hawaiian Islands
(Friedlander and DeMartini, 2002) as well as historical levels
on the main Hawaiian Islands (Friedlander and DeMartini,
2002; Williams et al., 2011; Howard et al., 2013; Heenan
et al., 2016). In a recent stock assessments, surgeonfishes and
parrotfishes had the highest number (83 and 50%, respectively)
of species with low spawning potential ratio (SPR) values, which
defines overexploitation (Nadon, 2017). However, there is also
substantial spatial variation in the predicted ability of nearshore
areas to recover from fishing pressure (Gorospe et al., 2018;
Stamoulis et al., 2018). These hotspots for fisheries recovery
should be prioritized for inclusion in the network of HMAs.

It is also important to ensure that herbivores will be protected
at all life-history phases within the HMA network. In particular,
herbivores are concentrated in areas that are important for their
various ecological needs (e.g., nursery, sheltering, feeding, and
spawning areas), and protecting these critical habitats can yield
significant benefits for conserving herbivore functional groups
(Green et al., 2014; Weeks et al., 2017). Thus, critical areas for
herbivores during spawning and nursery stages, as well as feeding
and sheltering, should also be prioritized for protection within
a network of HMAs. For example, spawning aggregations of
Acanthurus nigrorus have been observed in large boulder habitat
7–10 m deep near a steep (25–30 m) dropoff (Schemmel and
Friedlander, 2017), and larval surgeonfishes (e.g., Acanthurus
triostegus) are known to leave the pelagic stage and enter very
shallow water in Hawai’i, often in tide pools where they grow to
juvenile size in these shallow-water refugia (Randall, 1961).

Connectivity
To accommodate larval connectivity in the sizing and spacing
of herbivore management areas, barriers to gene flow across
the MHI must be considered. Compared with most Indo-Pacific
coral reef ecosystems, Hawai‘i’s reefs, are relatively isolated and
likely mostly self-seeding (Halford and Caley, 2009). Multispecies
dispersal barriers have been documented within the MHI
between island groups corresponding to major ocean channels
(Toonen et al., 2011; Wren et al., 2016). Within islands, studies of
existing MPAs in Hawai‘i indicate the potential for management
areas to support not only protected reef areas but also benefit
neighboring unprotected reefs through enhanced reproductive
output and adult spillover (Christie et al., 2010; Stamoulis and
Friedlander, 2013). For example, Christie et al. (2010) found
that the distance of Zebrasoma flavescens larval dispersal ranged
between 15 and 184 km along the coast of West Hawai‘i. Lastly,
coral reef community structure in Hawai‘i is primarily driven by
wave exposure (Dollar, 1982) with sheltered areas maintaining
larger fish populations (Friedlander and Parrish, 1998b). These
characteristics emphasize the need for stratification between and
within islands to achieve evenness in larval dispersal across the
network. Therefore, we suggest that HMAs should be replicated
within major shores (e.g., north, east, south, and west) on each
major island, and spaced appropriately to the geography and
biophysical attributes of the nearshore region (e.g., prevailing
currents, wave forcing) to ensure connectivity among HMAs
and fished areas.

In addition to larval connectivity, adult movements should be
considered throughout the network. However spatial use patterns
are variable as some herbivores in Hawai‘i are site-associated
most of the time, while others make periodic forays for specific
activities. For example, Zebrasoma flavescens occupy shallow
depths (3–6 m deep) during the day (Williams et al., 2009)
then make considerable crepuscular migrations to deeper waters
up to 600 m away from foraging to spawning and sheltering
sites (Claisse et al., 2011). Similarly, parrotfishes, especially large
individuals, also make forays at crepuscular hours and rely
heavily on the availability of nocturnal holes for shelter (Meyer
et al., 2010; Howard et al., 2013). These intermittent movements
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TABLE 2 | Recommended minimum MPA size for herbivorous fishes in Hawai‘i, based on Green et al. (2015) and Weeks et al. (2017).

Family Common name (Hawaiian
name)

Observed home range
size in Hawai‘i∗∗

Recommended
minimum MPA size∗∗

Hawai‘i
Reference/Data
sources

Acanthuridae (surgonfishes)

Acanthurus blochii Ringtail surgeonfish (pualu) 0.5 km∗ 1 km Meyer et al., 2010

Naso literatus Orangespine unicornfish
(umaumalei)

0.5 km∗ 1 km Meyer et al., 2010

Naso unicornis Bluespine unicornfish (kala) 300 and 600 m 1 km Meyer and Holland,
2005; Bierwagen et al.,
2017

Zebrasoma flavescens Yellow tang (lau’îpala) 0.6 km 2 km Claisse et al., 2011

Kyphosidae (chubs)

Kyphosus vaigiensis Lowfin chub (nenue) 311 km 600 km Sakihara et al., 2015

Labridae (parrotfishes)

Chlorurus perspicillatus Spectacled parrotfish [uhu
’ahu’ula (F) uhu uliuli (M)]

0.5 km∗ 1 km Meyer et al., 2010

Chlorurus sordidus Bullethead parrotfish (uhu) 0.5 km∗ 1 km Meyer et al., 2010

Scarus psittacus Palenose parrotfish (uhu) 0.5 km∗, 80 m 1 km Meyer et al., 2010;
Annandale, 2014

Scarus rubroviolaceus Redlip parrotfish [uhu
pālukaluka (F) uhu ’ele’ele (M)]

0.5 km∗, 100 m, occasional
forays up to 400 and 160 m

1 km Meyer et al., 2010;
Howard et al., 2013;
Annandale, 2014

∗Median distance based on 11 fish species, 5 herbivore species. ∗∗Linear distance based on Green et al. (2015).

should be captured in the size of HMAs, extending to the full
depth range (1–30 m) and ensuring multiple areas per coastline.

Movements of adult and juvenile herbivorous fishes, which
range from resident to long-ranging species, should also be
considered when considering the size of individual HMAs
(Table 2). Multiple species of small-bodied surgeonfishes and
parrotfishes are resident in a small (0.14 km2) marine reserve
in Kâne’ohe Bay, O‘ahu (Meyer and Holland, 2005; Bierwagen
et al., 2017; Stamoulis et al., 2017). The bluespine unicornfish
(Naso unicornis), a medium-sized herbivorous fish, demonstrated
daily movement patterns in Hawai‘i less than 1 km (Meyer
and Holland, 2005). Large-bodied adult herbivorous fishes often
have larger home ranges (Holland et al., 1993) and seek refuge
commensurate with their body size (Friedlander and Parrish,
1998a). For instance (Howard et al., 2013) found persistent
mean adult fish home range sizes for large-bodied parrotfish to
range between 834 and 2,279 m2 depending on depth. Chubs
(Kyphosus spp.) are unique in that they have much larger
home ranges than many other reef fishes (Eristhee, 2001; Pillans
et al., 2017), with rare individuals observed to make trans-
island movements over 300 km in Hawaiian waters (Sakihara
et al., 2015). Ultimately, reef physiography will be a critical
consideration in MPA network design in Hawai‘i as it has been
observed to play an important role in home range movement
(Holland et al., 1996).

In addition, ontogenetic patterns of habitat use by herbivores
should be considered in network design. Depth has a strong
correlation to fish assemblages in the main Hawaiian Islands
(Friedlander et al., 2007b) and herbivore biomass has been
observed to be highest at the relatively shallow depth range
of 4.3–7.2 m (Friedlander and Parrish, 1998a). Furthermore,
Kane and Tissot (2017) reports that herbivorous fishes in west

Hawai‘i are not abundant below 30 m, suggesting priority
should be given to nearshore waters 1–30 m deep. However,
in various life stages, herbivorous fish have been observed
to move between shallow to deep reef habitats (Ortiz and
Tissot, 2008; Ortiz and Tissot, 2012), highlighting the need
for adjacent areas of deep aggregate coral habitat and shallow
nearshore habitat (such as rubble and turf-rich boulders) to be
included within HMAs.

Green et al. (2015) recommend that fully protected MPAs
should cover at least twice the length of coastline that focal
species adults and juveniles require. To accommodate the full
range of movements of herbivorous fishes in Hawai‘i, each
HMA should be sized to accommodate large-bodied parrotfish
movements, covering no less than 2 km of the coastline. Large
distances traveled by chub species can be accommodated through
placement of multiple HMAs per coastline.

Climate Considerations
Given changing climatic conditions, it will be important to
protect ecological communities that are more likely to be resilient
to changes in climate and ocean change, as well as those that
may be particularly vulnerable and need more protection. The
network should therefore encompass a combinations of reefs
that have either (a) areas that have withstood bleaching in that
past or are thought to more likely to withstand bleaching in the
future (i.e., climate refugia) (McClanahan et al., 2007; McLeod
et al., 2012; Magris et al., 2015), (b) areas currently at high
risk of regime risks (e.g., areas with recent high exposure to
elevated temperatures) (Graham et al., 2015; Magris et al., 2015),
and (c) a distribution of areas that spreads the risk to address
uncertainty regarding how conditions may change (Salm et al.,
2006; Green et al., 2009, 2014).
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In Hawai‘i, there is a lack of long-term information on the
effect of bleaching events as the 2014 and 2015 events were
unprecedented in their extreme and widespread effects. Because
of this, refugia should be based on biophysical drivers that
were observed to correlate with areas either resisting or quickly
recovering from the bleaching events. Based on mortality and
recovery data synthesized through the Hawai‘i Coral Bleaching
Collaborative, areas with high weekly temperature variability
were found to better resist and immediately recover from high
temperature stress. Thus, the HMA network should include the
upper quantile of values (top 25%) of these areas to capture
potential climate refugia.

To maximize potential reef recovery from past bleaching,
HMAs should prioritize areas with highest exposure to
accumulated temperature stress following the consecutive
bleaching events must be addressed. To maximize recovery
potential of coral communities in Hawai‘i, the network should
prioritized to include areas of the state in Maui, Moloka‘i,
Lana‘i, and west Hawai‘i that experienced the highest bleaching
stress (NOAA Coral Reef Watch, 2015). The network should
include a portion of nearshore areas within these islands that
reached >8 DHW during the event, which is the level at
which widespread bleaching and substantial mortality is expected
to occur. This is important to help build the resilience of
coral communities that have had the highest exposure to
coral bleaching impacts to date and are in the most need for
additional management.

Future climate risk should also be mitigated by
spreading HMAs areas both across and within island units
(Salm et al., 2006; Green et al., 2009, 2014: see Principle 2).
Differences in exposure between the 2014 and 2015 bleaching
events suggest future exposure will also be variable across the
entire archipelago. Modeling suggests annual severe bleaching
starting between 2030 and 2040 in the MHI, with variable effects
across islands (Van Hooidonk et al., 2016). To spread the climate
risk, the design should include multiple HMAs. Stratifying
and replicating HMAs within the network will support the
natural process of adaptation to climate change and lessen the
possibility of major ecological impacts to the entire network from
individual disturbances.

Local Threats
Nutrient input has been shown to increase algal biomass,
trigger invasive blooms, and result in reef decline in Hawaiian
waters (Smith et al., 1981), particularly when combined with
decreased herbivory (Smith et al., 2001). Areas with high
sedimentation can suppress herbivory on coral reefs (Bellwood
and Fulton, 2008) and increased sediment loads may result
in more persistent algal coverage (Goatley and Bellwood,
2013; Goatley et al., 2016). In Hawai‘i, sources of land-based
pollution of particular concern include sedimentation from
erosion (both natural and human-induced), nutrient flux from
on-site sewage disposal systems, agriculture and golf-course
runoff, and urban runoff from impervious surfaces (Lecky,
2016; Wedding et al., 2018). Effects of land-based pollution
on coral health vary spatially with leeward, sheltered reefs
having a stronger relationship to watershed health compared to

windward, exposed coastlines with enhanced mixing (Rodgers
et al., 2012). Therefore, where possible, it will be important to
avoid placing HMAs in areas strongly affected by land-based
pollution. In addition, the network should be implemented to
complement land-based management strategies to support reef
resilience. In Hawai‘i, the Division of Forestry and Wildlife has
identified priority watershed areas covering forests on each island
(Sustainable Hawai‘i Initiative, 2018). HMAs should be paired
with these watershed restoration areas to align priorities between
management bodies.

DISCUSSION

Here we provide, for the first time, biophysical principles to guide
the design of HMAs to maintain and increase coral reef resilience.
We also provide a case study of how to apply these principles in
the unique biophysical environment of Hawai’i. The next step
in planning for a network of HMAs across the main MHI is
to incorporate socioeconomic, cultural, and governance (SECG)
considerations to balance ecological and human aspects of the
design. This more holistic set of guidance can then be used to
conduct a systematic spatial planning process where data related
to each principle can be mapped and analyzed simultaneously
using marine reserve design software such as Marxan.

The social context is particularly crucial to success of HMAs
in Hawai‘i, where herbivorous fishes are a valued nearshore
food resource, critical to both commercial and non-commercial
fisheries and where patterns of use are geographically variable
(Friedlander and Parrish, 1998a; Williams and Ma, 2013; Grafeld
et al., 2017; McCoy et al., 2018). This provides an opportunity to
use spatial estimates of herbivorous fish catch to balance human
use with conservation and fisheries management goals.

Community co-managed areas are relevant in the Hawai‘i
context and could contribute to the success of newly
implemented herbivore management areas. In 2016, the
first community-based subsistence fisheries area (CBSFA) was
established at Hā‘ena, Kauai. Several other communities are
currently pursuing CBSFA designation, some with herbivore
protections included, and many others are participating in
grassroots, community-based stewardship. This community
interest could be leveraged to appropriately place HMAs along
coastlines where they would be welcomed and supported, rather
than those where they may be misaligned with the community’s
interests (Friedlander et al., 2013, 2014; Ayers and Kittinger,
2014). We recommend pursuing both an ecologically and socially
connected network of HMAs appropriately designed in areas of
high community involvement and support.

Design of a cohesive network of MPAs is currently underway
as part of the state’s Marine 30 × 30 – an effort to achieve “30%
effective management in Hawai‘i’s nearshore marine waters by
2030” (Sustainable Hawai‘i Initiative, 2018). One objective of this
initiative is to increase reef resilience through improved spatial
management. The biophysical design principles that we provide
could be applied to prioritize specific nearshore areas to protect
herbivorous fishes, promote recovery from coral bleaching, and
build ecological resilience. Final placement and design of HMAs
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in Hawai‘i could be woven into this process through collaborative
planning with stakeholders and the public rulemaking process.

Coral reefs worldwide are experiencing the negative effects of
global climate change. Predictions of more frequent and severe
bleaching events in Hawai‘i and globally (Van Hooidonk et al.,
2016) are a catalyst for local managers to implement resilience
concepts within their jurisdictions and improve long-term
ecological resilience. The fate of coral reefs depends on our ability
to develop appropriate management solutions. Maintaining
herbivory has been recognized as a key strategy in both
prevention of and recovery from coral reef phase shifts (Bellwood
et al., 2006; Jouffray et al., 2015; McLeod et al., 2019). Developing
biophysical design principles for networks of HMAs are a step
in the translation of a highly recommended resilience-based
management practice, which includes strengthening protection
of herbivores (Graham et al., 2013; Anthony et al., 2015). Refining
existing management practices and tools, including how to design
and plan networks of MPAs, is one way that managers can begin
implementing resilience-based management at a local scale.
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