Syllabus of the Graduate Course CHEM 652 'Chemical Kinetics and Reaction Dynamics'

1. **Kinetics**

- 1.1. Basic concepts: reaction order, molecularity, rate laws
- 1.2. Reaction mechanisms: time dependence of reactance, intermediates, and products
- 1.3. Rate constants: Arrhenius rate law and deviation; activation energy versus entrance barriers
- 1.4. Experimental determination of rate constants

2. Macroscopic and microscopic processes

- 2.1. Cross section and impact parameter
- 2.2. Relationship between rate constants and cross sections
- 2.3. Attractive interaction potentials in bimolecular reactions
- 2.4. Experimental determination of cross sections

3. **Potential energy surfaces**

- 3.1. Two dimensional representation
- 3.2. Features on potential energy surfaces
- 3.3. Experimental probing of potential energy surfaces and reaction mechanisms
- 3.4. Molecular dynamics calculations

4. Transition state theory

- 4.1. Partition functions and chemical equilibrium
- 4.2. Transition state theory
- 4.3. Application of transition state theory to unimolecular decomposition
- 4.4. RRKM theory

5. Classical versus quantum mechanical treatment of elastic and reactive scattering

Required Textbooks

- 1. Molecular Reaction Dynamics and Chemical Reactivity, R.D. Levine, R.B. Bernstein (Oxford, New York).
- 2. Chemical Kinetics and Reaction Dynamics, Paul L. Houston (Mc Graw Hill, New York).

Optional Textbooks

- 1. Mathematical Methods for Physicists, G. Arfken, (Academic Press, New York).
- 2. Chemical Kinetics and Dynamics, J.I. Seinfeld, J.S. Francisco, W.L. Hase (Prentice Hall, New Jersey).