CHEMISTRY 652 Chemical Kinetics and Reaction Dynamics Spring 2017

Prof. Ralf I. Kaiser Bilger Hall 301 Office Hours M, 1:00-2:00 ralfk@hawaii.edu

1. Kinetics

- 1.1. Basic concepts: reaction order, molecularity, rate laws
- 1.2. Reaction mechanisms: time dependence of reactance, intermediates, and products
- 1.3. Rate constants: Arrhenius rate law and deviation; activation energy versus entrance barriers
- 1.4. Experimental determination of rate constants and solutions to coupled differential equations
- 1.5. Modern photoionization techniques

2. Macroscopic and microscopic processes

- 2.1. Cross section and impact parameter
- 2.2. Relationship between rate constants and cross sections
- 2.3. Attractive interaction potentials in bimolecular reactions
- 2.4. Experimental determination of doubly differential cross sections
- 2.5. Modern molecular beam techniques

3. **Potential energy surfaces**

- 3.1. Two dimensional representation
- 3.2. Features on potential energy surfaces
- 3.3. Experimental probing of potential energy surfaces and reaction mechanisms
- 3.4. Dynamics calculations in the gas phase and condensed phase

4. Transition state theory

- 4.1. Partition functions and chemical equilibrium
- 4.2. Transition state theory
- 4.3. Application of transition state theory to unimolecular decomposition
- 4.4. RRKM theory

5. Classical versus quantum mechanical treatment of elastic and reactive scattering

6. Experimental Reaction Dynamics – Gas Phase and Surface Science

Required Textbooks

- 1. Molecular Reaction Dynamics and Chemical Reactivity, R.D. Levine, R.B. Bernstein (Oxford, New York).
- 2. Chemical Kinetics and Reaction Dynamics, Paul L. Houston (Mc Graw Hill, New York).

KNOWLEDGE OF SOLVING COUPLED DIFFERENTIAL EQUATIONS, MATRICES, AND INTEGRALS IS MANDATORY; NO CALCULUS REVISION WILL BE GIVEN.

This is a 3-credit class (150 min instructions per week). Class times will be arranged with the students on January 10, 2017, 9:30 am, Bilger 302.