(1 Lec, 1 2-hr Lab) Introductory experience in analysis, synthesis, and design. Teamwork and project required. Pre: high school physics or consent.
Introduction to science and engineering of Solar System exploration with laboratory exercises. Covers planetary science, model-based systems engineering, mission planning, constraints on payload and spacecraft design, human spaceflight technology. Research projects emphasize written communication. A-F only. (Spring only) (Cross-listed as EPET 201)
(1 Lec, 2 2-hr Lab) Introductory experience in communication, presentation, professional ethics, social responsibility, engineering economics, quality control, and computer-aided drafting. Teamwork and project required. Pre: PHYS 170.
Dynamics of particles and rigid bodies; force, acceleration, impulse-momentum, work-energy. CE, CNST, ENGS, ME majors only. A-F only. Pre: C or better in CEE 270; MATH 244 (or concurrent) or MATH 253A (or concurrent). (Cross-listed as CEE 271) D
Essential techniques for remote compositional analysis of planets; understanding spectroscopy, mineralogy, and geochemistry of planetary surfaces and their measurement. Design of space flight instrumentation. A-F only. Pre: EPET 201, or ERTH 101 and ERTH 101L and ERTH 105, or ERTH 101 and ERTH 107; and CHEM 161 and PHYS 272. (Fall only) (Crosslisted as EPET 301)
(3 Lec, 1 Discussion) Basic laws, closed and open systems. Work, heat, concept of entropy. Properties of pure simple substances. Ideal gases. Introduction to power and refrigeration cycles. Pre: grade of C or better in all of CHEM 162 (or CHEM 171 or CHEM 181A), PHYS 170 and MATH 244 (or MATH 253A).
(3 Lec, 1 2-hr Lab) Incompressible and compressible ideal fluids, effects of viscosity. Similitude, boundary layer flow. Measurement techniques in thermodynamics and fluid mechanics. Hands-on experience with instrumentation. Open-ended design of thermofluid systems. Emphasis on writing instruction. Pre: grade of C or better in all of 311 and CEE 271 (or ME 271).
Electronic, atomic, and crystalline structure of materials and their effect on the mechanical, electrical, optical, and magnetic properties of engineering metals, ceramics, polymers, and composites. Pre: grade of C or better in all of CHEM 162 (or CHEM 171 or CHEM 181A), MATH 242 (or MATH 252A), and PHYS 170.
(3 Lec, 1 2-hr Lab) Energy requirements for manufacturing methods. Manufacturing methods to obtain components with desired size/shape/properties. Conduct manufacturing experiments. Emphasis on writing instruction. A-F only. Pre: 331 or consent.
(1 Lec, 1 2-hr Lab) Manufacturing laboratory: tension/ compression tests, cold rolling, welding, casting, statistical process control, programming and milling using a CNC machine. A-F only. Pre: 341 (or concurrent) or consent.
Numerical solutions for algebraic and transcendental equations, simultaneous linear algebraic equations, integration and differentiation; integration of ordinary differential equations. Engineering applications. Pre: grade of C or better in all of ECE 160 (or ECE 110 or ICS 111), MATH 244 (or MATH 253A), and MATH 302 (or MATH 307).
Introduction to analysis and design of deformable bodies subject to loading. Stress, strain, consitutive relation, axially loading, torsion, statically indeterminate systems, Mohr’s circle, failure criteria, buckling, defection due to axial, shear, torsional, and flexural loading. Pre: C or better in all of the following: CEE 270; and MATH 244 (or concurrent) or MATH 253A (or concurrent). (Crosslisted as CEE 370)
Design, analysis, and selection of machine components: shafts, screws, fasteners, welds, rolling contact bearings, journal bearings, gears, clutches, brakes, belts, and roller chains. Pre: 213, and either 371 or CEE 370.
Velocity and acceleration analysis of planar mechanisms; kinematic synthesis of linkages, cams, and gears; static and dynamic force analysis of mechanisms; balancing of machinery. Pre: CEE 271 or ME 271 (C or better), MATH 244 (or MATH 253A) and either MATH 302 or MATH 307
(3 Lec, 1 2-hr. Lab) Lumped-parameter modeling of dynamic systems. Methods of analysis, including transform techniques. Time and frequency response. Feedback control. Engineering instrumentation. Data acquisition. Dynamic measurements. Design and testing. Lab report writing. Pre: grade of C or better in all of CEE 271 (or ME 271) and MATH 302 (or MATH 307).
Covers all aspects of spacecraft design, subsystems, science payload, systems engineering, project management, budgets, and ethical issues that are important to consider in producing a fully successful mission. A-F only. Pre: 301. (Spring only) (Cross-listed as EPET 400)
Develops a space mission with a multidisciplinary team of engineers and scientists. Will build a small spacecraft and payload and seeks to answer important science questions. Emphasizes review report and proposal writing. A-F only. Pre: 400. (Fall only) (Cross-listed as EPET 401)
(1 Lec, 1 2-hr Lab) Analysis, design, fabrication, testing and characterization of engineering instrumentation. Computer-based data acquisition methods. Techniques and procedures associated with carrying out dynamic measurements within the constraints of cost, time and accuracy. Pre: one of 360, MATH 407, or PHYS 305 (or concurrent for any); and 375 (or concurrent).
Applications of ordinary differential equations, Laplace transform, vector field theory, matrices, line integrals. Pre: MATH 244 (or MATH 253A), and MATH 302 (or MATH 307).
Basic computational fluid dynamics; four important partial differential equations; introduction to finite element method: Interpolation and Galerkin method; finite element method for transport phenomena; some algorithms for parallel computing. A-F only. Pre: 422 (or concurrent ), and either 360, MATH 407 or PHYS 305; or consent.
Basic theory of orbits of space objects, including spacecraft, small satellites, planets and small planets, and other fundamentals of astrodynamics and applications to aerospace engineering. Junior standing or higher. A-F only. Pre: grade of C or better in all of the following: 271; 375; MATH 244 or MATH 253A; MATH 302 or MATH 307; ECE 160 or ICS 111.
Fundamentals of optimal control theory and calculus of variations. Application of this theory to aerospace engineering problems, including mission design problems and a wide range of space maneuvers. A-F only. Junior standing or higher. Pre: grade of C or better in all of the following: 271; 375; MATH 244 or MATH 253A; MATH 302 or MATH 307; ECE 160 or ICS 111.
Gas mixtures, generalized thermodynamic relationships, combustion and thermochemistry, chemical equilibrium, power and refrigeration cycles. Pre: grade of C or better in 311.
Principles, design and analysis of practical thermal systems. Engineering applications. Valve, compressor, condenser and evaporator technologies. System integration and control. Thermal loads and thermal comfort. Pre: 422 (or concurrent). (Fall only)
Principles, performance, and design of gas turbine power plants and propulsion systems. Pre: 422 (or concurrent).
The space environment (vacuum, neutral, radiation, and plasma); motion in gravitational fields; orbit transfers; Earth-satellite operations; rocketry; propulsion analysis and performance; reentry dynamics; interplanetary trajectories; attitude dynamics and stabilization. A-F only. Pre: consent.
(3 Lec, 1 2-hr Lab) Steady and unsteady conduction; steady convection and radiation; heat exchangers. Emphasis on writing instruction. Pre: 322.
Elementary mass diffusion; diffusion in a stationary medium; diffusion in a moving medium; low and high mass transfer theories; simultaneous heat and mass transfer; condensation, evaporation, and boiling; transpiration cooling; species boundary layers; engineering and design of heat and mass exchangers; current refrigerants and environmental regulations. A-F only. Pre: 422 or consent.
One-dimensional compressible flow involving change of area, friction, heat transfer. Normal and oblique shocks. Prandtl-Meyer flow. Application to nozzles, diffusers, airfoils. Pre: 322.
To introduce concepts in the thermal management of electronics, and to develop sound technical tools to approach modern electronic packaging and cooling applications. A-F only. Pre: 422 or consent.
Scaling methods and optimization under global constraints; multi-scale optimal design of mechanical, thermal, and natural systems; effectiveness of heat, fluid, and convective trees; theoretical design optimization of manmade and natural power systems; analysis of time dependent structures. A-F only. Pre: 371 and 422, or consent.
Fundamentals of solar energy, solar engineering material characteristics, and solar thermal and photovoltaic systems. Will learn solar thermal system components, and be able to perform simple system design. A-F only. Senior standing or higher. Pre: 422 or consent.
Analysis of component failures due to imperfections, fatigue, brittle fracture, wear, corrosion, bending, impact, and overload. Fracture mechanics. Case studies. Pre: 331 or consent.
Methodology for the selection of materials for mechanical applications to prevent mechanical failure and environmental degradation. Design considerations associated with the use of metals, ceramics, polymers, and composites. Pre: 341 and 371 (or CEE 370).
(1 Lec, 2 2-hr Lab) Common experimental techniques in materials testing and research: x-ray diffraction, optical and electron microscopy, thermal and mechanical properties, electrochemical methods—theory and hands-on experience. Pre: 341 or CHEM 351 (or concurrent). (Cross-listed as CHEM 435)
Basics of corrosion processes and emphasis on corrosion control. Thermodynamics and kinetics of corrosion, metal alloys and their behavior, corrosion control techniques (cathodic protection, anodic protection, coatings, and inhibitors). Pre: 341.
(2 Lec, 1 2-hr Lab) Modern mechatronics components and design principles; functionality of products, processes and systems; electrical circuits and mechanical components; programming and control; hands on technology; application case studies. ME, ECE, CE, ICS majors only. Pre: junior standing or consent. (Fall only)
(2 Lec, 1 2-hr Lab) Introduction to anisotropic materials, advanced manufacturing techniques for composite and intelligent materials, joining of composites, thin film processing and stereolithography, computer aided manufacturing and rapid prototyping, manufacturing process optimization, open-ended manufacturing projects. A-F only. Pre: 341, 342, and senior standing; or consent.
(3 Lec) Tools and techniques of micro- and nanotechnology in design, modeling, simulations, analysis, fabrication, testing and characterization; nano-materials, nano-structures, nano-composites, nano-coating, nano-optics, nano-electronics and nano-biotechnology. A-F only. Pre: senior standing or consent.
Fabrication, design, and analysis of physical systems, sensors, and actuators at the nanoscale and microscale. Microfabrication/nanofabrication, fabrication process design, electrostatistic and electromagnetic interactions, signal transduction, measurements. Course work will focus on process and system design. ENGR majors only. Pre: 331 (with a minimum grade of C-), 375 (with a minimum grade of C-), or consent.
Introduces the basic skills of preparing and publishing scientific research. Students will learn how to prepare, write, publish, and present a scientific paper, while working on a research project related to thermofluids. A-F only. Senior standing or higher. Pre: 322 or consent.
Analysis/design of feedback systems. Compensator design via root locus and Bode analysis. Routh/Nyquist stability. State space representation and introduction to MIMO formulation. Controllability/observability. Application to physical dynamic systems such as industrial robots. Pre: 375 or ECE 315 or consent.
Principles and design methods for autonomous systems. Pre: senior standing.
Energy conversion and its impact on the environment. Conventional, hydroelectric, nuclear fission and fusion, solar, wind, ocean, geothermal, and biomass power; energy storage, transmission and conservation. Pre: 322, 411, and 422 (or concurrent); or consent.
Nuclear reactor principles. Reactor heat transfer, heat generation and removal. Design and analysis of reactor power systems and plants. Pre: 411 (or consent) and 422.
Overview of flow visualization and measurement techniques including high speed photography of wakes, jets, shear layer, particle motion. Experimental design, statistics, image processing and data analysis. Junior standing or higher. A-F only. Pre: 322 (or concurrent), or consent.
Atom structure, electromagnetic waves and energy, electronic and energetic properties of semi-conducting materials, junctions, solar cells operations, bulk and thin film materials synthesis, integration of solar cells into the electric grid. ECE and ME majors only. Pre: (331 or ECE 324) with a minimum grade of C-. (Fall only)
Electrochemistry, batteries, fuel cells, flow batteries, electrochemical capacitors, electric vehicles, electrochemical grid storage. ENGR majors only. Pre: 331, CHEM 162, CHEM 171, or CHEM 181A (with a grade of C- or better). (Alt. years: spring)
(1-3 hr Lab) Techniques of experimental stress analysis: strain and deflection measurement of beams and shafts, strain to stress conversion, principal and maximum shearing stresses, failure in biaxial stress states, stress concentrations, residual stresses, buckling, creep, electrical resistance strain gages, brittle coatings, photoelastic methods, transducers. A-F only. Pre: 371 and departmental approval.
Response of machines and systems to transient and periodic excitation. Vibration isolation and transmissibility. Modal analysis of multi-degree-of-freedom systems. Applications to design. Pre: 371, 375; or consent.
Plane and spherical acoustic waves. Transmission, reflection, radiation, and absorption. Near and far fields, radiation patterns. Applications to noise control. Instruments. Pre: 375, ECE 211; or consent.
Measurement techniques in thermodynamics, fluid mechanics, and heat transfer. Hands-on experience with instrumentation. Open-ended design of thermofluid systems. Contemporary engineering ethics issues. Final report and presentation are required. A-F only. Pre: 422 (or concurrent).
(2 1-hr Lec, 2 2-hr Lab) Heuristic application of engineering design process and project planning via a significant, open-ended design project that includes realistic constraints involving economics, environmental sustainability, manufacturability, ethics, health, safety, society, and politics. Extensive written communication required. A-F only. Pre: 322, 341, 372, and 375; or consent.
(1 Lec, 2 2-hr Lab) Continuation of design project initiated in ME 481. Extension of conceptual design to final design. Manufacturing of prototype: material and part selection, procurement, manufacturing specifications/ drawings. Testing of complex systems. Extensive oral communication required. A-F only. Pre: 481.
Introduction to research and experimentation via pursuit and reporting of an open-ended design project. Ethical issues in research and experimentation. Engineering, Biological Engineering, and Ocean & Resources Engineering majors only. Senior standing or higher. A-F only. (Fall only)
Will cover system engineering design, analysis, and development concepts, requirements derivation/management, and program management processes, such as risk identification/ management and fiscal/schedule tools. ME majors only. Senior standing or higher. A-F only. Pre: 213 (with a minimum grade of C).
Provides real-world engineering experience through project assignment and working alongside a practicing engineer at the Pearl Harbor Naval Shipyard. ME majors only. Senior standing or higher. A-F only. Pre: (322, 341, 372, and 375) with a minimum grade of C.
Investigation of advanced problems, making use of faculty expertise for specific domains of work. (B) Design Project I; (C) Design Project II; (D) Research and Experiment Design. Junior or senior standing only. ME majors only. A-F only. Pre: instructor consent. Co-requisite: 481 for (B); 482 for (C); 483 for (D).
Specialized topics in thermosciences, mechanics, materials, systems, or design. Pre: consent.
Specialized topics in thermosciences, mechanics, materials, systems, or design. Pre: consent.
Investigation of advanced problems in mechanical engineering design or development. Student must find faculty sponsor before registering. A-F only. Pre: senior standing.
Analysis of principles of operation of renewable energy systems, and its interactions with sustainability. Fundamentals of renewable energy production, storage, and distribution. Pre: consent.
Introduction to general principles of classical thermodynamics. Main topics include equilibrium conditions, thermodynamic relations, Legendre transformations, Maxwell relations, stability of thermodynamic systems, phase transitions, and critical phenomena. Graduate students only. A-F only. Pre: 311 or consent.
Fundamentals of statistical thermodynamics. Main topics include entropy, Boltzmann law, thermodynamic driving forces, statistical mechanics, chemical equilibria, solutions and mixtures, and applications of statistical thermodynamics in biology, chemistry, physics, and nanoscience. A-F only. Pre: 311 or 611.
Advanced topics in aerodynamics, two- and three-dimensional wing theory, slender-body theory, lifting surface methods, vortex and wave drag, analytical and numerical methods, for computing unsteady aerodynamic behavior and introduction to flightdynamics. A-F only. Pre: 322 and 626, or consent.
Physiological response to thermal environment, designs of passive and active cooling systems, student project. Pre: 417 or consent.
Two-phase flow pattern and flow pattern maps; two-phase flow models (homogeneous, separate, drift flux, annular); laminar and turbulent film condensations; boiling incipience; pool boiling heat transfer; flow boiling heat transfer; critical heat flux (CHF). A-F only. Pre: 422 (or equivalent) or consent.
Review of Newtonian fluid mechanics. Blood rheology and flow in elastic tubes. Murray’s Law and pulsatile flow propagation. Microcirculation dynamics and biological transport. Aquatic movement and comparative biological examples. Pre: 322 and 422, or consent.
Steady and unsteady heat conduction with and without heat sources in solids. Analytical, numerical, graphical, analog methods for solving heat conduction problems. Pre: 422.
Heat transfer in laminar and turbulent boundary layers. Analogy between heat, momentum, mass transfer. Pre: 422 and 626.
Radiant interchange among surfaces. Gaseous radiation. Combined conduction, convection, and radiation heat transfer. Pre: 422 and senior standing.
Introduction to fundamental understanding of fluid mechanics and transport phenomena at micro-nanoscale; electrokinetics; chemical separation; colloids and emulsions; biophysics; micro-nanofabrication.
Integration of ordinary differential equations. Finite difference solutions of partial differential equations with applications to conduction and convection. Introduction to finite element methods. Pre: 422, and either MATH 190 or ECE 160.
Formulation and properties of the Navier-Stokes equations; exact solutions; creeping flows; lubrication theory; laminar boundary layers; laminar stability, and transition to turbulence; turbulent boundary layers. Pre: 322.
Heat and mass transfer in Earth’s interior with applications to geothermal and petroleum reservoir engineering. Pre: 422 or consent.
Chemical kinetics with heat and mass transfer. Balance equations applied to selected ideal reactors. Departures from ideality. Pre: 422.
(1 Lec, 2 2-hr Lab) Experimental methods and theory of thermochemical biomass conversion: static and dynamic temperature and mass measurements, thermogravimetry, differential scanning calorimetry, GCMS and HPLC techniques. Pre: consent.
Vector and tensor operations. Constutive equations. Generalized Newtonian fluids and linear viscoelastic fluids. Rheometry and experiments. Flow of suspensions. Advanced topics and rheology of polymers, food products, biomaterials and asphalt, laboratories. Pre: 626 or consent.
Properties of materials interpreted from the atomistic viewpoint. Crystal structure and defects. Thermodynamics of solids; phase transformations; experimental techniques. Pre: 331.
Theory of momentum, heat, and mass transfer processes. Integral and differential conservation equations, constitutive laws, and interfacial boundary conditions. Dimensional analysis, perturbation theory, asymptotics, similarity, and Green’s function methodology. Applications to problems in engineering. Graduate students only. Pre: grade of C or better in 322 or 626, or consent.
Electrochemistry, Li-ion batteries, electric vehicles, electrochemical grid storage. Repeatable one time. Engineering majors only. Pre: instructor consent.
Application of electrochemical theory and materials science to corrosion and oxidation reactions. Effect of environment, especially marine. Cathodic protection, coatings, inhibitors, treatment of water systems. Pre: 331.
Thermodynamics of cells, electrode kinetics, mass transfer by migration and diffusion, microelectrode techniques, forced convection, impedance, doublelayer structure, and absorbed intermediates in electrode processes. Pre: consent.
Mechanical property tests. Stress concentrations. Fracture mechanics; applications to materials failures and to selection of materials; emphasis on mechanical engineering applications. Pre: consent.
Exploration of simple, cost-effective alternatives in medicine through different stages of concept generation, design analysis, and prototype validation and investigation of their commercialization potential. Graduate students only. Pre: 341 or consent.
Introduction to composites; anisotropic elasticity and laminate theory; hygrothermal effects; composite beams, columns, rods, plates, and shells; energy method; failure theories; joining of composites, computer-aided design in composites. Pre: 371 or consent.
Science and applications of nanotechnology. Synthesis of nanostructures; nanoscale structure characterization by electron microscopy and Raman spectroscopy; electrical, thermal, and mechanical properties of nanostructures; fabrication of nanodevices; energy, environmental, and biological applications of nanomaterials. A-F only.
Fabrication, design, and analysis of physical systems, sensors, and actuators at the nanoscale and microscale, including electrostatic and electromagnetic interactions, signal transduction, and measurements. Course work will focus on literature review and integration of current research. Engineering majors only. Graduate students only. (Spring only
Fundamental and modern concepts of colloid and surface science. Main topics include surface thermodynamics, capillarity and wetting phenomena, surface forces, surfactants, and particles. Pre: 311 or consent.
Linear optimal feedback control, discrete time optimal control, fundamentals of adaptive control, application to motion and force control of robot arms and manipulators. Pre: 451, ECE 351; or consent.
Develop modern and advanced techniques in the design, development, and implementation of guidance, navigation, and control (GNC) systems for flight vehicles and other controllable dynamical systems. Graduate students only. A-F only. Pre: grade of C or better in all of the following: ME 271 or CEE 271; ME 375; MATH 244 or MATH 253A; MATH 302 or MATH 307; or consent. (Fall only)
Identifies the unique challenges faced by autonomous underwater and surface vehicles, and analyzes approaches to address those challenges. Topics include hydrodynamic vehicle modeling, propeller theory, subsystem integration, and motion control strategies. Graduate students only. Pre: MATH 307 or MATH 311 (or equivalent), and ECE 351 or ME 451 (or equivalent), or instructor consent. (Cross-listed as ORE 657)
Working principles of all major fuel cell types; fundamentals of proton exchange membrane (PEM) fuel cells; state-of-the-art theoretical models and diagnostic technologies for PEM fuel cells. A-F only. Pre: 422 (or equivalent) or consent.
Basics of energy transport and conversion processes and emphasis on microscopic behaviors of energy carriers. Introduction to quantum mechanics and solid state physics. Graduate students only. Engineering majors only. A-F only. Pre: graduate standing or instructor consent. (Alt. years)
Shape memory alloys; Shape Memory Effect (SME) and Superelasticity; hysteresis; applications in engineering, medical devices, and robotics; modeling and characterization; nonlineal control; finite element analyses. Engineering and computer science majors only. Graduate students only. (Fall only)
Cartesian tensors in mechanics, coordinate transformations, analysis of stress and strain, principal values, invariants, equilibrium and compatibility equations, constitutive relations, field equations. Problems in elasticity. A-F only. Recommended: 371 or CEE 370, or consent. (Cross-listed as CEE 671)
Introduction to finite element analysis and design in mechanical engineering. Applications to machine design, vibrations, elasticity, heat transfer. Pre: 360, 371; or consent.
Lecture on rigidbody dynamics. Topics include: dynamical systems; motion representation and constraints; Newtonian mechanics; Lagrangian mechanics; Hamilton’s principle; stability analysis; introduction to multibody dynamics. Pre: 375 or equivalent, or consent.
An interdisciplinary (JD-MBA) course examining legal, business, and technology issues related to building high growth companies. Student teams develop company feasibility reports and skills necessary to advise or build high growth businesses. Recommended: 531. Law, MBA, and ME students only. (Once a year) (Cross-listed as LAW 560 and MGT 653)
Chemical mechanisms of formation and destruction of major air pollutants, transport phenomena, and health and environmental impacts. Evolution of source and control technologies. Current and pending regulations and policies. CE, ECE, ME, and OE majors only. Pre: PHYS 170 and CHEM 171, or consent.
Current problems in all branches of mechanical engineering. All graduate students are required to attend; registrants are expected to present talks. Pre: graduate standing.
Highly specialized topics in thermosciences, mechanics, materials, system, or design. Pre: consent.
Directed study on subject of mutual interest to student and a staff member. Student must find faculty sponsor before registering. Repeatable unlimited times. Pre: graduate standing.
Thesis for degree of MS in mechanical engineering. Repeatable unlimited times. Pre: admission to candidacy and consent of thesis advisor.
Student assists in undergraduate classroom and/or project instruction under the direction and close supervision of faculty member. CR/NC only. Pre: admission to PhD candidacy or consent.
Research for doctoral dissertation. Repeatable unlimited times. Pre: candidacy for PhD in mechanical engineering.