Graduate Program Assessment Plan (PhD)

Department of Natural Resources and Environmental Management

Curriculum Map

Assessment of student learning outcomes from NREM core courses in terms of Knowledge Gain (K), Comprehension (C), Application (Ap), Analysis (An), Synthesis (S) and Evaluation (E).

Course	NREM Program Student Learning Outcomes					
Number	Skills acquired to solve	Quantitative	Communication	Practical Experience		
	Natural Resources and	Reasoning/Critical				
	Environmental	Thinking				
	Management Problems					
NREM 600	K, C ,Ap ,An ,S, E	Ар	An, S, E	Ар		
NREM 601	K, C ,Ap ,An ,S, E	K, C, Ap, An	S, E	Ap, An, S, E		
NREM 605	K	К	C, Ap			
NREM 611	K, C, Ap, An	K, C ,Ap ,An ,S, E	K, C ,Ap ,An ,S, E	K, C ,Ap ,An ,S, E		
NREM 612	K, C ,Ap ,An ,S, E	K, C ,Ap ,An ,S, E	Ap, E	Ap		
NREM 660	K, C, Ap, An, S, E	K, C, Ap, An, S, E	K, C, Ap, An, E	K, C, Ap, An, E		
/CEE 625						
NREM 662	K, C, Ap, An, E	K, C, Ap, An, E	K, C, Ap, An, E	K, C, Ap, An, E		
NREM 664	K, C, Ap, An, E	K, C, Ap, An, E	K, C, Ap, An, E	K, C, Ap, An, E		
NREM 665	K, C, Ap, An, S, E	K, C, Ap, An, S, E	K, An, S, E	K, Ap, An, S, E		
NREM 680	K, C, Ap, An, S, E	K, C, Ap, An, S, E	K, C, Ap, An, S, E	K, C, Ap, An, S, E		
NREM 682	K, C, Ap, An, S, E	K, C, Ap, An, S, E	K, C, An, S, E	K, C, Ap, An, S, E		
NREM 691	K, C, An, S, E	K, C, An, Ap, S, E	K, An, Ap, S, E	K, An, Ap, E		

Course	Description	Skills acquired to solve	Quantitative	Communication	Practical Experience
#		Natural Resources and	Reasoning/Critical Thinking		
		Environmental			
		Management Problems			
NREM 600	To analyze the biophysical potential and limitations of natural resource management approaches and evaluate the success or failure of actual management programs	Group participation. Literature and data searching. Soil and water modeling. Report writing	Soil and watershed modeling	Final project report and oral presentation; journal article review and discussion	Literature and data searching; interviewing; field and laboratory training; application of soil and watershed modeling to a real-world event
NREM 601	To introduce students to an economic framework for assessing natural resource and environmental management issues. It covers key issues and concepts; It applies economic methods to evaluate environmental issues. The evaluation helps students understand the behavioral sources of environmental problems and provide a foundation for developing and assessing innovative management and policy solutions	Literature, data searching and collecting. Application of economic principles to devise policies and evaluating natural resource and environmental problem. Economic modeling. Presentation skills and report writing	A research paper written by each student is required for the course to look at the following: how economic policies impact an issue, investigate the use and efficacy of economic methods of analysis for the paper. Either a conceptual framework or an empirical model is applied to analyze the problem that is being researched. Students are required to provide critical assessment of other students presentations of their research topics. Case studies were provided for students to provide constructive criticism based on the concepts and knowledge learned from the course	Final project report of > than 15 pages and an oral presentation of the paper are required of all students	Primary data collection and interviewing; application of economic and business modeling to a real environmental problem

NREM	To assist the new NREM	Introduction to research on	Introduction to statistics,	Several oral	
605	graduate student in developing	NREM	experimental methods and	presentations	
	skills necessary to design a		research design; Introduction	(PowerPoint),	
	research project. To achieve		to research ethics (including	written exercises,	
	this objective, the course		human subjects) and research	and a research	
	covered the following topics:		philosophy	proposal	
	the nature of scientific inquiry,				
	elements of a good research				
	proposal, making good use of				
	MS Office, grant proposal				
	writing and process, effective				
	research presentations, NREM				
	research partners, and learning				
	about projects/interests of				
	NREM faculty.				

NREM	To provide a clear	A thorough grounding in the	Original research paper calls	The three required	Primary data collection,
611	understanding of the	key economic concepts	for the formulation of specific	class presentations,	questionnaire
	conceptual/ theoretical,	underlying natural resource	objectives, testable	structured along	development, use of
	institutional, and policy	and environmental policy	hypotheses, selection and	clearly-defined	survey techniques and
	dimensions of natural	making; informed insights	application of procedures	guidelines, are	interviewing; economic
	resources development,	into the complex issues	involving the use of a variety	meant to develop	modeling and empirical
	management, allocation and	involved in resource	of econometric models,	and apply the	analysis; identification,
	markets/pricing, focusing on	production, pricing,	collection, tabulation and	student's oral	review and in-class
	their environmental impacts.	consumption, and allocation;	analysis of field-data and/or	communication	discussion of media-items
	Emphasis on policy analysis	hands-on experience in	secondary data, empirical	skills; the research	on relevant emerging
	using analytical approaches,	writing a research paper in	analysis, and crafting of clear	paper, fashioned	issues in the natural
	market and non-market	close accordance with the	and coherent policy	after a refereed	resources field (e.g.
	valuation techniques, case	guidelines of a peer-reviewed	prescriptions; class	journal article, is	climate change, natural
	studies, and empirical	journal in the field; and	presentations require the	designed to develop	disasters, energy price,
	modeling.	resource-specific policy	identification of key concepts	and augment the	water conservation)
		analysis skills.	in assigned papers, a critical	ability for clear,	
			analysis of these concepts in	coherent and concise	
			terms of specific criteria, and	writing; the essay-	
			suggestions for further	type tests help	
			refinements and additional	advance the ability	
			research to advance the	for quick thinking	
			discourse; demonstration of	and effective	
			ability to ferret out specific	writing.	
			policies for implementation		
			and an elucidation of their		
			potential impact on the		
			stakeholders, wherever		
			possible in quantitative terms		

NREM	This course considers the	Upon completing this course	Starting in the 3 rd week of	Students are	Students learn how to
612	historical context of	students should be able to: (1)	class, students are required to	required to lead an	calculate species richness
	degradation, the current status,	Understand the historical	write weekly critiques of	in-class discussion	and evenness from real-
	and the different types of	context and current status of	scientific papers that deal with	of a current	world data, how to
	degradation (physical,	degradation that occurs in	various degradation issues.	scientific paper.	estimate water and wind
	chemical, biological). The	human-dominated	Then, during class students	Students also	erosion, and how to work
	majority of the course will	ecosystems, (2) Be able to	lead discussion on the	participate in a best	with island biogeography
	focus on degradation issues	discuss verbally or in writing	objectives, methods, key	degradation paper	models. Students also
	associated with different types	concepts of stability,	results, strengths, and	contest, where they	critically read and assess
	of human-dominated	resistance, resilience, and	weakness of these papers.	make oral	current scientific
	ecosystems including forest,	sustainability, (3) Be familiar	Students also do take home	presentations as to	literature and lead
	rangeland, agriculture, urban,	with the causes and effects of	problem sets in which they	why they have	discussions of this
	wetland, coastal, and island.	physical, chemical, and	perform calculations or use	selected the best	literature. A field trip
	The later part of the course	biological degradation, (4)	quantitative skills learned in	degradation paper.	also introduces students
	will investigate appropriate	know how to calculate	class. A final project is also	A final project report	to degradation issues on
	conservation and restoration	species richness, evenness,	required where students can	of approximately 20	the island of Oahu.
	approaches to mitigate the	use the USLE and WEQ to	conduct a literature search,	pages and an oral	
	effects of degradation.	calculate water and wind	perform a GIS analysis,	presentation of the	
		erosion, (5) Have a better	analyze data, develop a model	paper are required of	
		understanding of the	of degradation. These projects	all students.	
		relationship between land-use	will be presented orally at the		
		and degradation, (6) Gain an	end of the semester as well as		
		appreciation for degradation	written up as a final paper.		
		issues unique to tropical			
		islands, (7) Be capable of			
		suggesting appropriate			
		conservation, rehabilitation,			
		or restoration measures to			
		mitigate degradation in			
		various types of human-			
		dominated ecosystems, (8)			
		Be able to evaluate the			
		scientific merit of papers in			
		the field of ecosystem			
		degradation, and (9)			
		Demonstrate more effective			
		participation in and			
		facilitation of group			
		discussions.			

NREM 691: Forest Nutritio n and Biogeoc hemistry (eventua lly to become NREM 686)	 Learn the basic processes of biogeochemistry in relation to forest nutrient cycling Understand the interactions between forest nutrient limitation and cycling rates Evaluate the effects of various fertilization regimes on nutrient limitation and cycling 	 Knowledge of biogeochemistry, forest nutrient cycling, and fertilization. Ability to read and evaluate peer-reviewed scientific literature How to develop and write a research grant proposal Improved presentation and report writing skills. 	 Students will learn to use a systems dynamics perspective to conceptualize complex systems. Students will be required to critically evaluate peer- reviewed scientific literature Students will learn to apply knowledge of biogeochemistry within a forest management context 	 Biweekly scientific article presentations are required as part of class discussions A presentation on the final project is required 	 Scientific literature database searching Grant proposal writing
NREM 680	Graduate level course on terrestrial ecosystem ecology (i.e., interactions between organisms & their environment as an integrated system). A range of topics are covered focusing on the factors controlling ecosystem structure and function, with emphasis on forest ecosystems within the context of human impacts and global change. Topics covered include: production ecology & carbon cycling; H2O & energy balances; nutrient dynamics; cycling of major elements (C, N, P, etc.) across plant-soil- atmosphere boundaries; biodiversity; anthropogenic and natural disturbances; and global change biology (climate change, land-use change, invasive species, etc.).	In each topical area covered, students develop an in-depth understanding of biological, ecological, and physical principles and concepts, science background, and quantitative skills required to understand and manage terrestrial ecosystems. Specific goals of the course are: to learn the basic principles and concepts of ecosystem ecology; to introduce current controversies and uncertainties in ecosystem ecology; to increase awareness of global change and its impact on ecosystem processes; and to increase awareness of human dependency on ecosystem processes, and how an understanding of ecosystem processes can be applied to the management of ecosystems	A final exam/research paper is assigned were each student designs a research project, in the form of a proposal, to address a significant issue remaining in this field. The choice of topics/ research areas is limited only in that: (i) it must be in the broad field of terrestrial ecosystem ecology, (ii) it must be a significant area of research (i.e., one in which their research proposal, if funded, would likely lead to a better understanding of a critical topic area), and (iii) it must be, in some important aspect, novel (i.e., it hasn't already been examined, documented, and resolved by someone else).	Weekly, student-led discussions on assigned readings from the peer- reviewed literature that supplement lecture material. Final exam/ research paper of 10-12 pages.	Knowledge and experience with theory of ecosystem ecology, methods available for quantifying ecosystem structure and function, and current areas of critical research needs.

NRFM	Graduate level seminar course	Through completion of	Equal weight is given to each	Weekly student-led	Knowledge and
682	that explores the foundations	NRFM 682 students will: (i)	of 3 categories: (i) discussion	discussions on	experience with theory of
002	of restoration ecology and the	understand the basic	leader (ii) discussion	assigned readings	restoration ecology
	application of ecological	theoretical underpinnings of	narticipation and (iii) final	from the neer-	methods available for
	theory to the practice of	restoration ecology: (ii)	comprehensive examination	reviewed literature	restoration of ecosystem
	restoration Application of	understand how ecological	All students are expected to	that supplement	structure and function
	restoration principles to	principles are applied to	An students are expected to	lacture meterial	and current areas of
	restoring Heusilen and other	restore acclosical systems:	alass and some propagad to	lecture material.	and current areas of
	restoring Hawanan and other	restore ecological systems,	class, and come prepared to		critical research needs.
	Ecosystems are considered.	and (iii) demonstrate	childrany analyze and discuss		
	Ecological restoration is the	comprehension, skill, and	the topics/interature/case		
	process of assisting the	competency in the following:	studies for that day.		
	recovery of an ecosystem that	(1) the historical development			
	has been degraded, damaged,	and empirical foundations of			
	or destroyed (SER, 2004).	restoration ecology; (2)			
	Restoration ecology, in turn,	relationship between			
	includes the theoretical	"restoration ecology",			
	principles underpinning the	"ecological restoration", and			
	field and the application of	the "practice of restoration",			
	these principles to the	including the role and value			
	restoration of ecosystems (i.e.,	of science in restoration; (3)			
	ecological restoration).	use of reference ecosystems			
		as endpoints for ecological			
		restoration; (4) how a subset			
		of ecological principles in			
		soil science, ecosystem			
		ecology, population biology,			
		community ecology, etc. are			
		used to restore ecosystems;			
		(5) interrelation of ecological			
		factors and processes			
		governing ecosystem			
		structure and function in			
		disturbed and degraded			
		ecosystems; and (6) current			
		research efforts and future			
		research needs in restoration			
		ecology			

NREM	The study of salt marshes,	Upon completion of this	Students are assigned 3 take	Students are	Students learn how to
665	mangroves, sea grass beds,	course students should: (1)	home problem sets in which	required to	calculate a wetland water
	and coral reefs with an	Understand the historical	they work with real data to	participate in small	budget, and a wetland N
	emphasis on the formation,	changes and current status of	perform calculations or use	group and in class	budget with real world
	hydrology, biogeochemistry,	coastal and wetland	quantitative skills learned in	discussion of current	data. Students also learn
	and community dynamics of	ecosystems, (2) Be able to	class. Students also are	scientific papers.	have to balance redox
	these systems. Management,	discuss verbally and in	required to read and discuss	Student who chose	reactions and classify
	policy, and restoration	writing the functions and	the strength and weakness of	to do a final project	wetland and deepwater
	strategies will also be	values of coastal and wetland	current scientific literature in	are required to	habitats according to the
	discussed.	ecosystems, (3) Gain an in-	the field of coastal ecology	present their	Cowardin System that is
		depth knowledge of wetland	and management. A midterm	research to the class	currently used by federal
		and coastal ecosystems and	exam is required of all	orally.	agencies in the U.S.
		their formation, hydrology,	students. Students can choose		Students also learn to
		biogeochemistry, and	whether to take a final exam or		critically read and assess
		community dynamics, (4)	do a final project (i.e.		current scientific
		Know how to classify	literature search, perform a		literature. Various
		wetlands and deepwater	GIS analysis, analyze data, or		optional field trips also
		habitats according to the	develop a model of coastal		introduce students to
		Cowardin classification	ecosystem dynamics). These		water quality and fish
		system, calculate a water	projects are presented orally at		sampling, coral reefs,
		budget, balance redox	the end of the semester as well		invasive species
		reactions, assess the status of	as written up as a final paper.		management, and
		wetlands, sea grass beds and			ecosystem restoration on
		coral reefs, (5) Be familiar			Oahu.
		with current issues in coastal			
		and wetland management			
		such as sea level rise,			
		invasive species,			
		eutrophication, coral			
		bleaching, ecological			
		restoration, etc., and (6) Be			
		able to analyze resource			
		problems for coastal and			
		wetland ecosystems and			
		suggest appropriate			
		management strategies.			
		1			

NREM	This course will introduce	Through this course students	The course consists of 1	Weekly, student-led	Knowledge and
664	students to process-based	can explore the role of scales	lecture and 1 Laboratory	discussions in the	experience with theory
	modeling of watershed with	in watershed modeling, can	session per week, and students	combined lecture-	and application of
	emphasis on concepts, logical	review current approaches for	are required to maintain	discussion based	process-based modeling
	and mathematical sequence of	watershed modeling, and can	significant class participation	lecture and	of watershed, with
	watershed modeling, and	acquire systematic	and Laboratory assignments/	Laboratory sessions.	emphasis on concepts,
	current model applications. It	knowledge of parameter	Homework. A combined	Students are	logical and mathematical
	deals with the characterization	analysis and model	lecture-discussion method of	required to write and	sequence of watershed
	and simulation of small	evaluation techniques and	presentation uses extensive	discuss critiques of	modeling, and current
	watershed systems including	applications. Upon	input from the students.	published papers and	model applications. Use
	land and channel phase	completing this course,	Students are required to write	the models. The	of some currently
	hydrologic processes and	students should be able to: (1)	weekly critiques of scientific	course includes	available and widely used
	pollutant transport processes.	Critically evaluate the	papers that deal with small	Laboratory	watershed models and
	Significant time will be given	usefulness and suitability of a	watershed modeling, as well	assignments/	their evaluation.
	to the investigation of the	model for a given particular	as to write critiques of the	Homework and Two	Application and a
	structure, algorithm, and	site; (2) Decide what type of	watershed models. Term	Exams. Term	detailed evaluation of a
	capabilities of current	input data required to be	project is also required where	project report and	particular watershed
	watershed computer models.	collected for a model; (3)	students can focus on a	oral presentation are	computer model to
	The student will have an	Apply a model to meet stated	detailed study of a particular	required.	address real watershed
	opportunity for "hands-on" use	objectives and a particular	watershed computer model		problems.
	of some currently available	situation; (4) Modify certain	including oral presentation of		
	watershed models, interpret	parts of a model if required	the selected model to the class.		
	and evaluate the model results	according to the needs; and	Term project is intended for		
	in a scientific way, and will be	(5) Be able to understand the	students to provide		
	expected to use computers	advantages and disadvantages	constructive criticism based on		
	extensively.	of watershed modeling.	the concepts and knowledge		
			learned from this course,		
			which include a written report		
			on the model, and		
			documentation of an actual		
			application of the model by		
			the student, to a specified		
			watershed.		

NREM	The course begins with an	Upon completing this course	The course consists of 2	The course consists	Knowledge and
660	overview of the basics of soil	students will have an	lectures per week and a total	of 2 lectures per	experience with theory
	physical properties. Then it	advanced understanding of	of 6 Laboratory sessions.	week and a total of 6	and application of
	covers the hydrologic	the topic and the expertise to	Students are required to	Laboratory sessions.	numerical modeling tools
	processes in soil including	use numerical models as a	thoroughly analyze, present,	The course includes	to apply for simulating
	water flow, solute movement	research and teaching tool for	and write the data for the	homework	water flow, solute
	and gaseous transport in the	simulating or predicting	reports of each laboratory.	problems, reports of	movement and gaseous
	variably saturated	water flow, solute or	Data analyses require the use	each laboratory, and	transport in the saturated
	(saturated/unsaturated) zones.	pollutant movement and	of spreadsheet software for	three Exams.	(saturated/unsaturated)
	Public domain packages	gaseous transport in the	data analysis, interpretation.	Reports of each	zones. Literature, data
	(RETC and Rosetta) will be	variably saturated	and presentation. Reports	laboratory are due 2	collection and analysis,
	used to analyze and estimate	(saturated/unsaturated) zones	should be adequately	weeks after the date	field and laboratory
	soil hydraulic properties. A	of the soil or porous media.	presented. Students are	of the laboratory	training. Application and
	public domain numerical	L	required to follow original	session. Students	evaluation of numerical
	model HYDRUS-1D will be		research paper format for	are required to	models to address real to
	introduced and used in several		reports. Students are required	complete a term	water flow and solute
	practical and theoretical		to complete a research project	paper of the research	transport related
	exercises. Students will have		during the course of the course	project and to	problems.
	the opportunity to use these		where students can choose a	prepare 1-2 page	-
	models to simulate problems		field or a laboratory	project proposals,	
	of their interest.		experiment and can also	first draft, and final	
			conduct a literature review or	version of	
			a modeling exercise using	manuscripts, and to	
			HYDRUS-1D or 2D.	perform 12 min oral	
			Students are required to	presentation.	
			prepare 1-2 page project	-	
			proposals, first draft, and final		
			version of manuscripts, and to		
			perform 12 min oral		
			presentation. Students are also		
			allowed to choose any topic		
			related to water flow and		
			solute transport from given		
			topics or topics of their own		
			interests or related to your		
			research.		

NREM	This course will provide	Upon completing this course	The course consists of 1	The course consists	Fundamental knowledge
662	students with a fundamental	students will have a	lecture and 1	of 1 lecture and 1	and experience with
	understanding of the	fundamental understanding of	Laboratory/field/homework	Laboratory/	theory and application of
	hydrologic cycle, the	watershed hydrology, and	per week, and students are	field/homework per	watershed hydrology.
	interactions among the	hydrologic analysis in	required to attend and	week.	Application of hydrologic
	hydrosphere, atmosphere and	watershed management such	participate. Students are	Labs/Homeworks	analysis in watershed
	land-use management (forest,	as rainfall, effective rainfall,	required to weekly discuss	and "Hands-on"	management such as
	agriculture and urban) effects	canopy interception,	their reading assignments.	include watershed	rainfall, effective rainfall,
	on the amount, timing and	evapotranspiration,	Students are required to	hydrologic	canopy interception,
	quality of water resources.	infiltration, stream flow and	complete a research project	measurement, data	evapotranspiration,
	This course will develop the	hydrographs, particularly: (1)	during the course of the course	analysis, modeling	infiltration, stream flow
	ability to quantify the	the rainfall-runoff-stream	where students can choose a	and model	and hydrographs.
	magnitude of hydrologic	flow relationship; (2)	field or a laboratory	application and	Literature, data collection
	entities in small watersheds.	hydrologic information to	experiment. They can also	evaluation. Students	and analysis, field and
	The student will have an	land use management and	conduct a literature review or	are required to	laboratory training.
	opportunity for "hands-on" use	impact of different	a modeling exercise using one	complete a term	Through term paper,
	of hydrologic analysis in	management practices on	of the watershed models	paper of the research	students can develop their
	watershed management such	natural resources; and (3)	(WMS, N-SPECT, and	project and to	investigative and
	as rainfall, effective rainfall,	impact of different watershed	AnnAGNPS). Students are	prepare 1-2 page	analytical skills, and
	canopy interception,	management on hydrology,	allowed to choose any topic	project proposals,	constructive criticism
	evapotranspiration,	water quality of the surface	related to watershed hydrology	first draft, and final	based on the concepts,
	infiltration, stream flow and	and groundwater resources,	or topics of their interests or	version of	application, and
	hydrographs.	and flooding.	related to their research.	manuscripts, and to	knowledge learned from
			Students can also utilize	perform 15 min oral	this course on watershed
			publicly available data sets for	presentation.	hydrology.
			analysis (e.g., USGS, NOAA,		
			HI-DLNR, etc.)		