Lava fingerprinting reveals differences between Hawai'i's twin volcanoes

University of Hawaiʻi at Mānoa
Marcie N.W. Grabowski, (808) 956-3151
Outreach Coordinator, School of Ocean and Earth Science and Technology
Posted: Nov 29, 2011

A robotic arm on the JASON2 sub collects a lava sample from Mauna Loa, 10,000 feet below sea level.
A robotic arm on the JASON2 sub collects a lava sample from Mauna Loa, 10,000 feet below sea level.

Hawaiʻi's main volcano chains – the Loa and Kea trends – have distinct sources of magma and unique plumbing systems connecting them to the Earth’s deep mantle, according to research published this week in Nature Geoscience by scientists at the University of Hawaiʻi at Mānoa, University of British Columbia (UBC), and the University of Massachusetts, Amherst.

This study is the first to conclusively relate geochemical differences in surface lava rocks from both chains to differences in their deep mantle sources, over 1,700 miles below the Earth’s surface, at the core-mantle boundary.

“We now know that by studying oceanic island lavas we can approach the composition of the Earth's mantle, which represents 80 percent of the Earth's volume and is obviously not directly accessible,” said Dominique Weis, Canada Research Chair in the Geochemistry of the Earth’s Mantle and Director of UBC’s Pacific Centre for Isotopic and Geochemical Research. “It also implies that mantle plumes indeed bring material from the deep mantle to the surface and are a crucial means of heat and material transport to the surface.”

The results of this study also suggest that a recent dramatic increase in Hawaiian volcanism, as expressed by the existence of the Hawaiian islands and the giant Mauna Loa and Mauna Kea volcanoes (which are higher than Mount Everest when measured from their underwater base), is related to a shift in the composition and structure of the source region of the Hawaiian mantle plume. Thus, this work shows, for the first time, that the chemistry of hotspot lavas is a novel and elegant probe of deep earth evolution.

Weis and UBC colleagues Mark Jellinek and James Scoates made the connection by careful fingerprinting of samples of Hawaiian island lavas – generated over the course of five million years – by isotopic analyses. Co-author and University of Massachusetts professor J. Michael Rhodes emphasized that the research included collecting 120 new samples from Mauna Loa, "the largest volcano on Earth," 

”Hawaiian volcanoes are the best studied in the world and yet we are continuing to make fundamental discoveries about how they work,” said co-author and UH Mānoa School of Ocean and Earth Science and Technology (SOEST) volcanologist Michael Garcia.

The next steps for the researchers will be to study the entire length of the Hawaiian chain (which provides lava samples ranging in age from five to 42 million years old) as well as other key oceanic islands to assess if the two trends can be traced further back in time and to strengthen the relationship between lavas and the composition of the deep mantle.

Research support provided by the Belgian Fonds National de la Recherche Scientifique (FNRS), NSERC Discovery Grants, and U.S. National Science Foundation, and the Canadian Institute for Advanced Research.

Nature Geoscience: Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume, DOI: 10.1038/NGEO1328

Content of this press release was co-written with UBC.