Tag Archives: solar system

ratkowski_PS1haleakala

Unparalleled views

Ask most people about Hawai‘i, and sun, surf and beaches may readily come to mind.  But ask individuals who are fascinated by the field of astronomy about the islands, and their eyes will light up for an entirely different reason.

Over the past four decades, the Aloha State has become the world’s most sought-after location for the construction of large ground-based telescopes. The arrival of these telescopes was strongly promoted by the Institute for Astronomy (IfA) at the University of Hawai‘i at Mānoa and, as a result, the IfA has become one of the leading astronomical research centers on the planet, with offices and laboratories on O‘ahu, Maui and Hawai‘i Island.

Within the next seven years, Hawai‘i will welcome four new telescopes that will be constructed at two superb observatory sites: the 3,000-meter peak of Haleakalā on Maui and the 4,200-meter peak of Mauna Kea on the biggest island of Hawai‘i.  Both high-altitude sites are known for their remarkable clarity, dryness and lack of atmospheric turbulence.

“With the excellent facilities already existing on Mauna Kea and Haleakalā, and with the next generation of the world’s most powerful telescopes expected to arrive soon, Hawai‘i will maintain an international leadership role in astronomy with its central position in the Pacific,” said IfA Director Günther Hasinger.

The first to arrive will be an addition to the existing Pan-STARRS telescope, PS1, which has been conducting survey operations since December 2009. PS1 is the most powerful survey system yet built with a 1.8-m primary mirror and an optical design that provides sharp images over an exceptionally large field of view.

In early 2013, a second Pan-STARRS telescope, PS2, will be installed about fifty feet north of PS1 on Haleakalā. The PS2 telescope and its camera are very close in design to PS1, with a few improvements based on IfA’s experience with PS1. Its features will allow astronomers to survey the entire visible sky in four nights to detect “killer asteroids,” supernovae and other transient objects. Data collected from PS2 will open up a new dimension in studies of the solar system, the galaxy, and the most-distant objects in the Universe.

The ultimate goal of the Pan-STARRS project is to build the PS4 observatory, which is expected to replace the 40-year-old UH 2.2-m telescope on Mauna Kea, the first large telescope built in Hawai‘i. PS4 will employ four optical systems and will help detect billions of star and galaxies, and millions of asteroids.

Solar scientists are always trying to predict how the sun will influence global changes here on Earth. “Our best models of what the sun is doing don’t work,” said IfA astronomer Jeff Kuhn, while explaining why we need the Advanced Technology Solar Telescope (ATST) about to be built on Haleakala on Maui. The project, funded by the National Science Foundation, is a collaborative effort involving researchers from IfA and scientists from 22 other institutions around the world. The ATST will be the largest solar telescope ever built, and the largest single advance in solar research capabilities since the days of Galileo.

Climate changes, on timescales ranging from a few years up to the times over which cultures and civilizations grow and perish, are affected by the sun’s variability. As researchers have found in the past, there is no doubt that the sun has caused climate changes that make current trends in global warming look mild. “Unfortunately, we do not understand and cannot predict these effects even over the next decade,” said Kuhn, who serves as co-investigator on the project. “The ATST will allow us to see how magnetic fields affect the sun and the solar system environment between Earth and the sun.” The ATST is expected to have its “first light” in 2018.

Also scheduled for completion later this decade, at a location atop Mauna Kea, is the Thirty Meter Telescope (TMT). Building on the success of the 10-meter twin Keck telescopes—now the world’s largest—the 30-meter primary mirror will be composed of 492 segments, giving the TMT nine times the collecting area of today’s largest optical telescopes. The TMT will enable astronomers to detect and study light from the earliest stars and galaxies and test many of the fundamental laws of physics.

“Thanks to its large mirror and advanced adaptive optics system, TMT will provide the sharpest images ever obtained of planets around the stars,” said IfA astronomer Mike Liu. “This will allow us to observe them in the process of forming and to measure their temperatures and compositions. Such measurements will tell us how our own solar system formed and if similar systems are common throughout the Galaxy.”

The TMT is a joint partnership involving the California Institute of Technology, the University of California, and the Association of Canadian Universities for Research in Astronomy. The National Astronomical Observatory of Japan, Department of Science and Technology of India, and National Astronomical Observatories of the Chinese Academy of Sciences are also participating in the project.

Pardon the puns, but the ongoing observation at the IfA is that things are definitely looking up.  For more information about the Institute for Astronomy, visit www.ifa.hawaii.edu.

Top photo: The Pan-STARRS PS1 telescope atop Haleakalā captures celestial objects above Hawai‘i with its unique Gigapixel Camera and sophisticated computerized system. Photo by Rob Ratkowski © 2010 PS1 Science Consortium.

2011-ht-frontiers

Charting new space frontiers

Using an ion microprobe, HIGP scientists seek to understand the earliest events in our Solar System by studying the isotopic composition of meteorites.

Although NASA’s space shuttle program may have come to an end, the excitement has not dwindled for researchers and faculty at the University of Hawaii at Manoa who have been actively involved in the exploration of the Solar System for more than 30 years.  The planetary and remote sensing programs within the School of Ocean and Earth Science and Technology’s Hawaii Institute of Geophysics and Planetology (HIGP) have had a long history in working with NASA to send robotic spacecraft to explore the planets, including missions to Mercury, Moon and Mars.

Seven HIGP faculty members are currently members of the science teams of spacecraft in orbit around Mercury, the Moon and Mars.  For example, Jeffrey Gillis-Davis is a member of the MESSENGER Team exploring Mercury as well as the Lunar Reconnaissance Orbiter radar team investigating the Moon.  Jeffrey Taylor, an expert on the geochemistry of planets, compares compositional differences of Mars and the Moon in order to see how these worlds differ from the Earth.  Paul Lucey studies the Moon using thermal infrared data to not only search for differences in rock compositions but also studies the temperature differences of the surface between the day- and night-sides of the Moon. Computer models and laboratory experiments involving lava flows are the particular interests of Sarah Fagents.

 

“The researchers search for signs of former water on the surface of the Red Planet, investigate the geologic processes in the earliest parts of the history of the planet Mercury, and map impact craters and volcanic rocks on the Moon,” said HIGP Director Peter Mouginis-Mark.  “HIGP is actively involved in designing new instruments that might fly to the Moon within the next decade, as well as fly instruments in Earth orbit to study analog terrains.”  Venus is another planetary target of great interest to HIGP, with faculty members conducting research that would bring new measurement techniques for spacecraft that might one day land on the surface, as well as map the surface from orbit in unprecedented detail.

One of HIGP's star planetary scientists, G. Jeffrey Taylor, recently won the prestigious Shoemaker Award from NASA for his outstanding contributions to lunar petrology and geochemistry.

Graduate students of the HIGP program have also made a mark for themselves in planetary research. “Former HIGP students are now in charge of instruments in orbit around Saturn, an ultra-high-resolution camera in orbit around the Moon, and the cameras on the robotic vehicles driving over the surface of Mars,” shared Mouginis-Mark.  “Our former graduate students have been instrumental in studying asteroids from the NEAR and Dawn missions, and they are targeting cameras on lunar spacecraft to identify the most interesting volcanic features and impact craters!”

 

The planetary program at HIGP offers a wide range of courses, ranging from an introduction to the Solar System for freshmen undergraduates to specific courses on the geochemistry and physics of the planets.  Field analysis of analog sites for the Moon and Mars is particularly popular with the students.  Because the active Kilauea volcano is one of the most similar volcanoes on Earth to the ones that are found on Mars, HIGP routinely runs workshops on the Big Island to introduce students to the ways that lava flows and craters form, and how they appear in satellite data that are comparable to the measurements made from spacecraft in orbit around Mars, the Moon and the moon of Jupiter called Io.

Central to HIGP’s planetary mission is the ability to study rocks from space.  Using world-class facilities in the W.M. Keck Foundation’s Cosmochemistry Laboratory, faculty and students study the isotopic composition of meteorites from the asteroids and Mars.  “They search for minerals found during the very first few million years of Solar System history, not only to understand how the planets formed, but also to search for materials that originated from other stars and that were then included within the rocks that we now study on Earth,” explained Mouginis-Mark.  Particles from the Sun are also investigated by HIGP faculty and students through their detailed analysis of particles returned to Earth by the Stardust spacecraft.

 

Finding meteorites is another aspect of HIGP’s planetary research.  Over the years, more than a dozen faculty members, post-docs and graduate students have traveled to Antarctica, camping for up to six weeks on the frozen continent so that they can search for rocks from space.  HIGP members have found hundreds of meteorites over the last two decades, adding not only to our own research, but also contributing significantly to the national collection of samples from space.

Mouginis-Mark is excited for the future of planetary exploration. “NASA has just put the Dawn spacecraft into orbit around the asteroid Vesta, the Mars rover ‘Opportunity’ is perched on the rim of a big meteorite crater, and amazing things are being found on the Moon with the high resolution camera,” said Mouginis-Mark.  “All of these opportunities will significantly help further build HIGP’s planetary research.”

Looking to the future, HIGP is working with colleagues in Canada and England to get a new mission to the Moon funded.  HIGP would play a major role in the science goals of this mission, as well as instrument development and the landing of the spacecraft.

For more information on planetary space missions and the Hawaii Institute of Geophysics and Planetology, visit http://www.higp.hawaii.edu/.

Top photo: Kilauea volcano provides an outstanding opportunity for students to learn about volcanic processes that have also shaped the Moon, Mars and Venus.