i-Tree
Ecosystem Analysis

UHM
MAIN CAMPUS, PHASE 1

Urban Forest Effects and Values
August 2013
Summary

Understanding an urban forest's structure, function and value can promote management decisions that will improve human health and environmental quality. An assessment of the vegetation structure, function, and value of the UHM urban forest was conducted during 2013. Data from 158 field plots located throughout UHM were analyzed using the i-Tree Eco model developed by the U.S. Forest Service, Northern Research Station.

- Number of trees: 3,360
- Tree cover: 28.0%
- Most common species: Coconut palm, Macarthur palm, Manilla palm
- Percentage of trees less than 6" (15.2 cm) diameter: 23.2%
- Pollution removal: 2 metric tons/year ($10.4 thousand/year)
- Carbon storage: 1,490 metric tons ($117 thousand)
- Carbon sequestration: 61 metric tons/year ($4.78 thousand/year)
- Oxygen production: 131 metric tons/year ($0/year)
- Avoided runoff: 1,380 cubic meters/year ($3.23 thousand/year)
- Building energy savings: $42.4 thousand/year
- Avoided carbon emissions: $2.83 thousand/year
- Structural values: $2.54 million

Metric Ton: 1000 kilograms
Carbon storage: the amount of carbon bound up in the above-ground and below-ground parts of woody vegetation
Carbon storage and carbon sequestration values are calculated based on $78 per metric ton
Structural value: value based on the physical resource itself (e.g., the cost of having to replace a tree with a similar tree)
Pollution removal value is calculated based on the prices of $1253 per metric ton (carbon monoxide), $6752 per metric ton (ozone), $6752 per metric ton (nitrogen dioxide), $1653 per metric ton (sulfur dioxide), $5669 per metric ton (particulate matter less than 10 microns and greater than 2.5 microns), $4508 per metric ton (particulate matter less than 2.5 microns)
Energy saving value is calculated based on the prices of $280.2 per MWH and $31.59 per MBTU
Monetary values ($) are reported in US Dollars throughout the report except where noted

For an overview of i-Tree Eco methodology, see Appendix I. Data collection quality is determined by the local data collectors, over which i-Tree has no control. Additionally, some of the plot and tree information may not have been collected, so not all of the analyses may have been conducted for this report.
Table of Contents

Summary .. 2
I. Tree characteristics of the urban forest 4
II. Urban forest cover & leaf area 7
III. Air pollution removal by urban trees 8
IV. Carbon storage and sequestration 9
V. Oxygen production 10
VI. Avoided Runoff 11
VII. Trees and building energy use 12
VIII. Structural and functional values 13
IX. Potential pest impacts 14
 Appendix I. i-Tree Eco Model and Field Measurements 18
 Appendix II. Relative tree effects 21
 Appendix III. Comparison of urban forests 22
 Appendix IV. General recommendations for air quality improvement 23
 Appendix VI. Invasive species of urban forest 24
 Appendix VII. Potential risk of pests 25
References .. 26
I. Tree Characteristics of the Urban Forest

The urban forest of UHM has an estimated 3,360 trees with a tree cover of 28.0 percent. Trees that have diameters less than 6-inches (15.2 cm) constitute 23.2 percent of the population. The three most common species are Coconut palm (10.0 percent), Macarthur palm (9.1 percent), and Manilla palm (6.4 percent).

![Pie chart of tree species composition in UHM]

Figure 1. Tree species composition in UHM

The overall tree density in UHM is 65.4 trees/hectare (see Appendix III for comparable values from other cities).

![Bar chart of number of trees/ha in UHM by land use]

Figure 2. Number of trees/ha in UHM by land use
Urban forests are composed of a mix of native and exotic tree species. Thus, urban forests often have a tree diversity that is higher than surrounding native landscapes. Increased tree diversity can minimize the overall impact or destruction by a species-specific insect or disease, but it can also pose a risk to native plants if some of the exotic species are invasive plants that can potentially out-compete and displace native species. In UHM, about 4 percent of the trees are species native to North America, while 1 percent are native to the state or district. Species exotic to North America make up 63 percent of the population. Most exotic tree species have an origin from Asia (27.2 percent of the species).

Figure 3. Percent of tree population by diameter class (DBH=stem diameter at 1.37 meter)

Figure 4. Percent of live trees by species origin

The plus sign (+) indicates the plant is native to another continent other than the ones listed in the grouping.

Invasive plant species are often characterized by their vigor, ability to adapt,
reproductive capacity, and general lack of natural enemies. These abilities enable them to displace native plants and make them a threat to natural areas [1]. Six of the 103 tree species sampled in UHM are identified as invasive on the state invasive species list [2]. These invasive species comprise 3.9 percent of the tree population though they may only cause a minimal level of impact. The three most common invasive species are Fiddlewood (1.5 percent of population), Allspice (1.0 percent), and Satinleaf (0.7 percent) (see Appendix V for a complete list of invasive species).
II. Urban Forest Cover and Leaf Area

Many tree benefits equate directly to the amount of healthy leaf surface area of the plant. In UHM, the most dominant species in terms of leaf area are Raintree, Hill’s weeping fig, and Coconut palm. Trees cover about 28 percent of UHM.

The 10 most important species are listed in Table 1. Importance values (IV) are calculated as the sum of relative leaf area and relative composition.

Table 1. Most important species in UHM

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Percent Population</th>
<th>Percent Leaf Area</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coconut palm</td>
<td>10.0</td>
<td>7.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Raintree</td>
<td>2.4</td>
<td>13.7</td>
<td>16.1</td>
</tr>
<tr>
<td>Hill’s weeping fig</td>
<td>1.7</td>
<td>10.6</td>
<td>12.3</td>
</tr>
<tr>
<td>Macarthur palm</td>
<td>9.1</td>
<td>1.9</td>
<td>10.9</td>
</tr>
<tr>
<td>False olive</td>
<td>4.2</td>
<td>5.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Benjamin fig</td>
<td>1.2</td>
<td>7.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Manilla palm</td>
<td>6.4</td>
<td>1.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Indian walnut</td>
<td>2.9</td>
<td>3.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Pink shower</td>
<td>2.9</td>
<td>2.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Lemonscented gum</td>
<td>1.2</td>
<td>4.3</td>
<td>5.6</td>
</tr>
</tbody>
</table>

The most dominant ground cover types are Building (28.1 percent) and Grass (26.7 percent).

![Figure 5. Percent ground cover in UHM](image-url)
III. Air Pollution Removal by Urban Trees

Poor air quality is a common problem in many urban areas. It can lead to decreased human health, damage to landscape materials and ecosystem processes, and reduced visibility. The urban forest can help improve air quality by reducing air temperature, directly removing pollutants from the air, and reducing energy consumption in buildings, which consequently reduces air pollutant emissions from the power plants. Trees also emit volatile organic compounds that can contribute to ozone formation. However, integrative studies have revealed that an increase in tree cover leads to reduced ozone formation [3].

Pollution removal by trees and shrubs in UHM was estimated using field data and recent available pollution and weather data. Pollution removal was greatest for ozone. It is estimated that trees and shrubs remove 2 metric tons of air pollution (ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter less than 10 microns and greater than 2.5 microns (PM10), particulate matter less than 2.5 microns (PM2.5), and sulfur dioxide (SO2)) per year with an associated value of $10.4 thousand (see Appendix I for more details).

![Pollution removal and value](image)

Figure 6. Pollution removal (bars) and associated value (points) for trees in UHM

PM10 consists of particulate matter less than 10 microns and greater than 2.5 microns. As PM2.5 is also estimated, the sum of PM10 and PM2.5 provides the total pollution removal and value for particulate matter less than 10 microns.

Pollution Removal value is calculated based on the prices of $1253 per metric ton (carbon monoxide), $6752 per metric ton (ozone), $6752 per metric ton (nitrogen dioxide), $1653 per metric ton (sulfur dioxide), $5669 per metric ton (particulate matter less than 10 microns and greater than 2.5 microns), $4508 per metric ton (particulate matter less than 2.5 microns).
IV. Carbon Storage and Sequestration

Climate change is an issue of global concern. Urban trees can help mitigate climate change by sequestering atmospheric carbon (from carbon dioxide) in tissue and by altering energy use in buildings, and consequently altering carbon dioxide emissions from fossil-fuel based power plants [4].

Trees reduce the amount of carbon in the atmosphere by sequestering carbon in new growth every year. The amount of carbon annually sequestered is increased with the size and health of the trees. The gross sequestration of UHM trees is about 61 metric tons of carbon per year with an associated value of $4.78 thousand. Net carbon sequestration in the urban forest is about 49 metric tons. Carbon storage and carbon sequestration values are calculated based on $78 per metric ton (see Appendix I for more details).

![Bar chart showing carbon sequestration and value for species with greatest overall carbon sequestration in UHM.]

Figure 7. Carbon sequestration and value for species with greatest overall carbon sequestration in UHM

As trees grow they store more carbon as wood. As trees die and decay, they release much of the stored carbon back to the atmosphere. Thus, carbon storage is an indication of the amount of carbon that can be lost if trees are allowed to die and decompose. Trees in UHM are estimated to store 1,490 metric tons of carbon ($117 thousand). Of all the species sampled, Hill’s weeping fig stores the most carbon (approximately 13.2% of the total carbon stored. Raintree sequesters the most carbon (12.6% of all sequestered carbon.)
V. Oxygen Production

Oxygen production is one of the most commonly cited benefits of urban trees. The net annual oxygen production of a tree is directly related to the amount of carbon sequestered by the tree, which is tied to the accumulation of tree biomass.

Trees in UHM are estimated to produce 131 metric tons of oxygen per year. However, this tree benefit is relatively insignificant because of the large and relatively stable amount of oxygen in the atmosphere and extensive production by aquatic systems. Our atmosphere has an enormous reserve of oxygen. If all fossil fuel reserves, all trees, and all organic matter in soils were burned, atmospheric oxygen would only drop a few percent [5].

Table 2. The top 20 oxygen production species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Oxygen (metric tons)</th>
<th>Net Carbon Sequestration (metric tons/yr)</th>
<th>Number of trees</th>
<th>Leaf Area (square kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raintree</td>
<td>16.59</td>
<td>6.22</td>
<td>82.00</td>
<td>0.07</td>
</tr>
<tr>
<td>False olive</td>
<td>15.52</td>
<td>5.82</td>
<td>140.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Hill's weeping fig</td>
<td>9.87</td>
<td>3.70</td>
<td>58.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Indian walnut</td>
<td>7.95</td>
<td>2.98</td>
<td>99.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Pink shower</td>
<td>6.91</td>
<td>2.59</td>
<td>99.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Haitian catalpa</td>
<td>6.45</td>
<td>2.42</td>
<td>33.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Benjamin fig</td>
<td>5.84</td>
<td>2.19</td>
<td>41.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Lemonscented gum</td>
<td>5.15</td>
<td>1.93</td>
<td>41.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Rainbow shower tree</td>
<td>4.83</td>
<td>1.81</td>
<td>74.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Primavera</td>
<td>4.45</td>
<td>1.67</td>
<td>49.00</td>
<td>0.01</td>
</tr>
<tr>
<td>White cedar</td>
<td>3.57</td>
<td>1.34</td>
<td>41.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Fiddlewood</td>
<td>3.49</td>
<td>1.31</td>
<td>49.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Trumpet-tree spp</td>
<td>2.72</td>
<td>1.02</td>
<td>58.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Scheffleria</td>
<td>2.37</td>
<td>0.89</td>
<td>8.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Parkia spp</td>
<td>2.35</td>
<td>0.88</td>
<td>8.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Sea putat</td>
<td>2.32</td>
<td>0.87</td>
<td>8.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Bauhinia spp</td>
<td>1.95</td>
<td>0.73</td>
<td>33.00</td>
<td>0.01</td>
</tr>
<tr>
<td>India paduak</td>
<td>1.95</td>
<td>0.73</td>
<td>16.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Fiddle leaf fig</td>
<td>1.87</td>
<td>0.70</td>
<td>8.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Monkeypod</td>
<td>1.84</td>
<td>0.69</td>
<td>8.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>
VI. Avoided Runoff

Surface runoff can be a cause for concern in many urban areas as it can contribute pollution to streams, wetlands, rivers, lakes, and oceans. During precipitation events, some portion of the precipitation is intercepted by vegetation (trees and shrubs) while the other portion reaches the ground. The portion of the precipitation that reaches the ground and does not infiltrate into the soil becomes surface runoff [6]. In urban areas, the large extent of impervious surfaces increases the amount of surface runoff.

Urban trees, however, are beneficial in reducing surface runoff. Trees intercept precipitation, while their root systems promote infiltration and storage in the soil. The trees of UHM help to reduce runoff by an estimated 1,380 cubic meters a year with an associated value of $3.23 thousand (see Appendix I for more details).

![Avoided Runoff and Value for Species with Greatest Overall Impact on Runoff in UHM](image)

Figure 8. Avoided runoff and value for species with greatest overall impact on runoff in UHM
VII. Trees and Building Energy Use

Trees affect energy consumption by shading buildings, providing evaporative cooling, and blocking winter winds. Trees tend to reduce building energy consumption in the summer months and can either increase or decrease building energy use in the winter months, depending on the location of trees around the building. Estimates of tree effects on energy use are based on field measurements of tree distance and direction to space conditioned residential buildings [7].

Trees in UHM are estimated to reduce energy-related costs from residential buildings by $42.4 thousand annually. Trees also provide an additional $2,826 in value by reducing the amount of carbon released by fossil-fuel based power plants (a reduction of 36 metric tons of carbon emissions).

Table 3. Annual energy savings due to trees near residential buildings. Note: negative numbers indicate an increased energy use or carbon emission.

<table>
<thead>
<tr>
<th></th>
<th>Heating</th>
<th>Cooling</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBTU(^1)</td>
<td>-14</td>
<td>n/a</td>
<td>-14</td>
</tr>
<tr>
<td>MWH(^2)</td>
<td>-1</td>
<td>154</td>
<td>153</td>
</tr>
<tr>
<td>Carbon avoided (mt(^3))</td>
<td>0</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

\(^1\)One million British Thermal Units
\(^2\)Megawatt-hour
\(^3\)Metric ton

Table 4. Annual savings\(^1\) ($) in residential energy expenditure during heating and cooling seasons. Note: negative numbers indicate a cost due to increased energy use or carbon emission.

<table>
<thead>
<tr>
<th></th>
<th>Heating</th>
<th>Cooling</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBTU(^2)</td>
<td>-442</td>
<td>n/a</td>
<td>-442</td>
</tr>
<tr>
<td>MWH(^3)</td>
<td>-280</td>
<td>43,151</td>
<td>42,871</td>
</tr>
<tr>
<td>Carbon avoided</td>
<td>0</td>
<td>2,826</td>
<td>2,826</td>
</tr>
</tbody>
</table>

\(^1\)Based on the prices of $280.2 per MWH and $31.59 per MBTU (see Appendix I for more details)
\(^2\)One million British Thermal Units
\(^3\)Megawatt-hour
VIII. Structural and Functional Values

Urban forests have a structural value based on the trees themselves (e.g., the cost of having to replace a tree with a similar tree); they also have functional values (either positive or negative) based on the functions the trees perform.

The structural value of an urban forest tends to increase with a rise in the number and size of healthy trees [8]. Annual functional values also tend to increase with increased number and size of healthy trees, and are usually on the order of several million dollars per year. Through proper management, urban forest values can be increased; however, the values and benefits also can decrease as the amount of healthy tree cover declines.

Structural values:
- Structural value: $2.54 million
- Carbon storage: $117 thousand

Annual functional values:
- Carbon sequestration: $4.78 thousand
- Pollution removal: $10.4 thousand
- Lower energy costs and carbon emission reductions: $45.3 thousand (Note: negative value indicates increased energy cost and carbon emission value)

Figure 9. Structural value of the 10 most valuable tree species in UHM
IX. Potential Pest Impacts

Various insects and diseases can infest urban forests, potentially killing trees and reducing the health, value and sustainability of the urban forest. As pests tend to have differing tree hosts, the potential damage or risk of each pest will differ among cities. Thirty-one pests were analyzed for their potential impact and compared with pest range maps [9] for the conterminous United States. In the following graph, the pests are color coded according to the county’s proximity to the pest occurrence in the United States. Red indicates that the pest is within the county; orange indicates that the pest is within 250 miles of the county; yellow indicates that the pest is within 750 miles of the county; and green indicates that the pest is outside of these ranges.

Figure 10. Number of susceptible UHM trees and structural value by pest (points)

Aspen Leafminer (AL) [10] is an insect that causes damage primarily to trembling or small tooth aspen by larval feeding of leaf tissue. AL has the potential to affect 0.0 percent of the population ($0 in structural value).

Asian Longhorned Beetle (ALB) [11] is an insect that bores into and kills a wide range of hardwood species. ALB poses a threat to 0.0 percent of the UHM urban forest, which
represents a potential loss of $0 in structural value.

Beech Bark Disease (BBD) [12] is an insect-disease complex that primarily impacts American beech. This disease threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.

Butternut Canker (BC) [13] is caused by a fungus that infects butternut trees. The disease has since caused significant declines in butternut populations in the United States. Potential loss of trees from BC is 0.0 percent ($0 in structural value).

The most common hosts of the fungus that cause Chestnut Blight (CB) [14] are American and European chestnut. CB has the potential to affect 0.0 percent of the population ($0 in structural value).

Dogwood Anthracnose (DA) [15] is a disease that affects dogwood species, specifically flowering and Pacific dogwood. This disease threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.

American elm, one of the most important street trees in the twentieth century, has been devastated by the Dutch Elm Disease (DED) [16]. Since first reported in the 1930s, it has killed over 50 percent of the native elm population in the United States. Although some elm species have shown varying degrees of resistance, UHM could possibly lose 0.0 percent of its trees to this pest ($0 in structural value).

Douglas-Fir Beetle (DFB) [17] is a bark beetle that infests Douglas-fir trees throughout the western United States, British Columbia, and Mexico. Potential loss of trees from DFB is $0 ($0 in structural value).

Emerald Ash Borer (EAB) [18] has killed thousands of ash trees in parts of the United States. EAB has the potential to affect 0.0 percent of the population ($0 in structural value).

One common pest of white fir, grand fir, and red fir trees is the Fir Engraver (FE) [19]. FE poses a threat to 0.0 percent of the UHM urban forest, which represents a potential loss of $0 in structural value.

Fusiform Rust (FR) [20] is a fungal disease that is distributed in the southern United States. It is particularly damaging to slash pine and loblolly pine. FR has the potential to affect 0.0 percent of the population ($0 in structural value).

The Gypsy Moth (GM) [22] is a defoliator that feeds on many species causing widespread defoliation and tree death if outbreak conditions last several years. This pest threatens 0.2 percent of the population, which represents a potential loss of $0 in structural value.

Infestations of the Goldspotted Oak Borer (GSOB) [21] have been a growing problem in southern California. Potential loss of trees from GSOB is $0 ($0 in structural value).
As one of the most damaging pests to eastern hemlock and Carolina hemlock, Hemlock Woolly Adelgid (HWA) [23] has played a large role in hemlock mortality in the United States. HWA has the potential to affect 0.0 percent of the population ($0 in structural value).

The Jeffrey Pine Beetle (JPB) [24] is native to North America and is distributed across California, Nevada, and Oregon where its only host, Jeffrey pine, also occurs. This pest threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.

Quaking aspen is a principal host for the defoliator, Large Aspen Tortrix (LAT) [25]. LAT poses a threat to 0.0 percent of the UHM urban forest, which represents a potential loss of $0 in structural value.

Laurel Wilt (LWD) [26] is a fungal disease that is introduced to host trees by the redbay ambrosia beetle. This pest threatens 0.2 percent of the population, which represents a potential loss of $0 in structural value.

Mountain Pine Beetle (MPB) [27] is a bark beetle that primarily attacks pine species in the western United States. MPB has the potential to affect 0.0 percent of the population ($0 in structural value).

The Northern Spruce Engraver (NSE) [28] has had a significant impact on the boreal and sub-boreal forests of North America where the pest's distribution overlaps with the range of its major hosts. Potential loss of trees from NSE is $0 ($0 in structural value).

Oak Wilt (OW) [29], which is caused by a fungus, is a prominent disease among oak trees. OW poses a threat to 0.0 percent of the UHM urban forest, which represents a potential loss of $0 in structural value.

Port-Orford-Cedar Root Disease (POCRD) [30] is a root disease that is caused by a fungus. POCRD threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.

The Pine Shoot Beetle (PSB) [31] is a wood borer that attacks various pine species, though Scotch pine is the preferred host in North America. PSB has the potential to affect 0.0 percent of the population ($0 in structural value).

Spruce Beetle (SB) [32] is a bark beetle that causes significant mortality to spruce species within its range. Potential loss of trees from SB is $0 ($0 in structural value).

Spruce Budworm (SBW) [33] is an insect that causes severe damage to balsam fir. SBW poses a threat to 0.0 percent of the UHM urban forest, which represents a potential loss of $0 in structural value.

Sudden Oak Death (SOD) [34] is a disease that is caused by a fungus. Potential loss of trees from SOD is $0 ($0 in structural value).
Although the Southern Pine Beetle (SPB) [35] will attack most pine species, its preferred hosts are loblolly, Virginia, pond, spruce, shortleaf, and sand pines. This pest threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.

The Sirex Wood Wasp (SW) [36] is a wood borer that primarily attacks pine species. SW poses a threat to 0.0 percent of the UHM urban forest, which represents a potential loss of $0 in structural value.

Thousand Canker Disease (TCD) [37] is an insect-disease complex that kills several species of walnuts, including black walnut. Potential loss of trees from TCD is $0 ($0 in structural value).

The Western Pine Beetle (WPB) [38] is a bark beetle and aggressive attacker of ponderosa and Coulter pines. This pest threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.

Since its introduction to the United States in 1900, White Pine Blister Rust (Eastern U.S.) (WPBR) [39] has had a detrimental effect on white pines, particularly in the Lake States. WPBR has the potential to affect 0.0 percent of the population ($0 in structural value).

Western spruce budworm (WSB) [40] is an insect that causes defoliation in western conifers. This pest threatens 0.0 percent of the population, which represents a potential loss of $0 in structural value.
Appendix I. i-Tree Eco Model and Field Measurements

i-Tree Eco is designed to use standardized field data from randomly located plots and local hourly air pollution and meteorological data to quantify urban forest structure and its numerous effects [41], including:

- Urban forest structure (e.g., species composition, tree health, leaf area, etc.).
- Amount of pollution removed hourly by the urban forest, and its associated percent air quality improvement throughout a year. Pollution removal is calculated for ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide and particulate matter (<2.5 microns and <10 microns).
- Total carbon stored and net carbon annually sequestered by the urban forest.
- Effects of trees on building energy use and consequent effects on carbon dioxide emissions from power plants.
- Structural value of the forest, as well as the value for air pollution removal and carbon storage and sequestration.
- Potential impact of infestations by pests, such as Asian longhorned beetle, emerald ash borer, gypsy moth, and Dutch elm disease.

In the field 0.040 hectare plots were randomly distributed. Typically, all field data are collected during the leaf-on season to properly assess tree canopies. Within each plot, typical data collection (actual data collection may vary depending upon the user) includes land use, ground and tree cover, individual tree attributes of species, stem diameter, height, crown width, crown canopy missing and dieback, and distance and direction to residential buildings [42, 43].

Invasive species are identified using an invasive species list [2] for the state in which the urban forest is located. These lists are not exhaustive and they cover invasive species of varying degrees of invasiveness and distribution. In instances where a state did not have an invasive species list, a list was created based on the lists of the adjacent states. Tree species that are identified as invasive by the state invasive species list are cross-referenced with native range data. This helps eliminate species that are on the state invasive species list, but are native to the study area.

To calculate current carbon storage, biomass for each tree was calculated using equations from the literature and measured tree data. Open-grown, maintained trees tend to have less biomass than predicted by forest-derived biomass equations [44]. To adjust for this difference, biomass results for open-grown urban trees were multiplied by 0.8. No adjustment was made for trees found in natural stand conditions. Tree dry-weight biomass was converted to stored carbon by multiplying by 0.5.

To estimate the gross amount of carbon sequestered annually, average diameter growth from the appropriate genera and diameter class and tree condition was added to the existing tree diameter (year x) to estimate tree diameter and carbon storage in year x+1. Carbon storage and carbon sequestration values are based on estimated or customized local carbon values. For international reports that do not have local values, estimates are based on the carbon value for the United States [45] and converted to local currency with user-defined exchange rates.

The amount of oxygen produced is estimated from carbon sequestration based on atomic weights: net O2 release (kg/yr) = net C sequestration (kg/yr) \times 32/12. To estimate
the net carbon sequestration rate, the amount of carbon sequestered as a result of tree growth is reduced by the amount lost resulting from tree mortality. Thus, net carbon sequestration and net annual oxygen production of the urban forest account for decomposition [46].

Air pollution removal estimates are derived from calculated hourly tree-canopy resistances for ozone, and sulfur and nitrogen dioxides based on a hybrid of big-leaf and multi-layer canopy deposition models [47, 48]. As the removal of carbon monoxide and particulate matter by vegetation is not directly related to transpiration, removal rates (deposition velocities) for these pollutants were based on average measured values from the literature [49, 50] that were adjusted depending on leaf phenology and leaf area. Removal estimates of particulate matter less than 10 microns incorporated a 50 percent resuspension rate of particles back to the atmosphere [51]. Recent updates (2011) to air quality modeling are based on improved leaf area index simulations, weather and pollution processing and interpolation, and updated pollutant monetary values [52, 53, and 54].

Air pollution removal value was calculated based on local incidence of adverse health effects and national median externality costs. The number of adverse health effects and associated economic value is calculated for ozone, sulfur dioxide, nitrogen dioxide, and particulate matter <2.5 microns using the U.S. Environmental Protection Agency’s Environmental Benefits Mapping and Analysis Program (BenMAP). The model uses a damage-function approach that is based on the local change in pollution concentration and population [55].

National median externality costs were used to calculate the value of carbon monoxide removal and particulate matter less than 10 microns and greater than 2.5 microns [56]. PM10 denotes particulate matter less than 10 microns and greater than 2.5 microns throughout the report. As PM2.5 is also estimated, the sum of PM10 and PM2.5 provides the total pollution removal and value for particulate matter less than 10 microns.

Annual avoided surface runoff is calculated based on rainfall interception by vegetation, specifically the difference between annual runoff with and without vegetation. Although tree leaves, branches, and bark may intercept precipitation and thus mitigate surface runoff, only the precipitation intercepted by leaves is accounted for in this analysis.

The value of avoided runoff is based on estimated or user-defined local values. For international reports that do not have local values, the national average value for the United States is utilized and converted to local currency with user-defined exchange rates. The U.S. value of avoided runoff is based on the U.S. Forest Service’s Community Tree Guide Series [57].

If appropriate field data were collected, seasonal effects of trees on residential building energy use were calculated based on procedures described in the literature [7] using distance and direction of trees from residential structures, tree height and tree condition data. To calculate the monetary value of energy savings, local or custom prices per MWH or MBTU are utilized.

Structural values were based on valuation procedures of the Council of Tree and Landscape Appraisers, which uses tree species, diameter, condition, and location information [58]. Structural value may not be included for international projects if there is insufficient local data to complete the valuation procedures.

Potential pest risk is based on pest range maps and the known pest host species that are likely to experience mortality. Pest range maps from the Forest Health Technology Enterprise Team (FHTET) [9] were used to determine the proximity of each pest to the
county in which the urban forest is located. For the county, it was established whether the insect/disease occurs within the county, is within 250 miles of the county edge, is between 250 and 750 miles away, or is greater than 750 miles away. FHTET did not have pest range maps for Dutch elm disease and chestnut blight. The range of these pests was based on known occurrence and the host range, respectively [9].
Appendix II. Relative Tree Effects

The urban forest in UHM provides benefits that include carbon storage and sequestration, and air pollutant removal. To estimate the relative value of these benefits, tree benefits were compared to estimates of average municipal carbon emissions [59], average passenger automobile emissions [60], and average household emissions [61].

Carbon storage is equivalent to:
• Amount of carbon emitted in UHM in 5 days
• Annual carbon (C) emissions from 987 automobiles
• Annual C emissions from 496 single-family houses

Carbon monoxide removal is equivalent to:
• Annual carbon monoxide emissions from 0 automobiles
• Annual carbon monoxide emissions from 1 single-family houses

Nitrogen dioxide removal is equivalent to:
• Annual nitrogen dioxide emissions from 10 automobiles
• Annual nitrogen dioxide emissions from 7 single-family houses

Sulfur dioxide removal is equivalent to:
• Annual sulfur dioxide emissions from 114 automobiles
• Annual sulfur dioxide emissions from 2 single-family houses

Particulate matter less than 10 micron (PM10) removal is equivalent to:
• Annual PM10 emissions from 2,130 automobiles
• Annual PM10 emissions from 205 single-family houses

Annual carbon sequestration is equivalent to:
• Amount of carbon emitted in UHM in 0.2 days
• Annual C emissions from 0 automobiles
• Annual C emissions from 0 single-family houses

Note: estimates above are partially based on the user-supplied information on human population total for study area
Appendix III. Comparison of Urban Forests

A common question asked is, "How does this city compare to other cities?" Although comparison among cities should be made with caution as there are many attributes of a city that affect urban forest structure and functions, summary data are provided from other cities analyzed using the i-TREE Eco model.

I. City totals for trees

<table>
<thead>
<tr>
<th>City</th>
<th>% Tree Cover</th>
<th>Number of trees</th>
<th>Carbon storage (metric tons)</th>
<th>Carbon Sequestration (metric tons/yr)</th>
<th>Pollution removal (metric tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calgary, Canada</td>
<td>7.2</td>
<td>11,889,000</td>
<td>404,000</td>
<td>19,400</td>
<td>296</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>36.8</td>
<td>9,415,000</td>
<td>1,220,000</td>
<td>42,100</td>
<td>1,508</td>
</tr>
<tr>
<td>Toronto, Canada</td>
<td>20.5</td>
<td>7,542,000</td>
<td>900,000</td>
<td>36,600</td>
<td>1,100</td>
</tr>
<tr>
<td>New York, NY</td>
<td>21</td>
<td>5,212,000</td>
<td>1,226,000</td>
<td>38,400</td>
<td>1,521</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>21</td>
<td>2,627,000</td>
<td>541,000</td>
<td>14,600</td>
<td>390</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td>15.7</td>
<td>2,113,000</td>
<td>481,000</td>
<td>14,600</td>
<td>523</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>28.6</td>
<td>1,928,000</td>
<td>474,000</td>
<td>14,600</td>
<td>379</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>22.3</td>
<td>1,183,000</td>
<td>289,000</td>
<td>9,500</td>
<td>258</td>
</tr>
<tr>
<td>Woodbridge, NJ</td>
<td>29.5</td>
<td>986,000</td>
<td>145,000</td>
<td>5,000</td>
<td>191</td>
</tr>
<tr>
<td>Minneapolis, MN</td>
<td>26.5</td>
<td>979,000</td>
<td>227,000</td>
<td>8,100</td>
<td>277</td>
</tr>
<tr>
<td>Syracuse, NY</td>
<td>23.1</td>
<td>876,000</td>
<td>157,000</td>
<td>4,900</td>
<td>99</td>
</tr>
<tr>
<td>Morgantown, WV</td>
<td>35.9</td>
<td>661,000</td>
<td>85,000</td>
<td>2,700</td>
<td>60</td>
</tr>
<tr>
<td>Moorestown, NJ</td>
<td>28</td>
<td>583,000</td>
<td>106,000</td>
<td>3,400</td>
<td>107</td>
</tr>
<tr>
<td>Jersey City, NJ</td>
<td>11.5</td>
<td>136,000</td>
<td>19,000</td>
<td>800</td>
<td>37</td>
</tr>
<tr>
<td>Freehold, NJ</td>
<td>34.4</td>
<td>48,000</td>
<td>18,000</td>
<td>500</td>
<td>19</td>
</tr>
</tbody>
</table>

II. Per hectare values of tree effects

<table>
<thead>
<tr>
<th>City</th>
<th>No. of trees</th>
<th>Carbon Storage (metric tons)</th>
<th>Carbon Sequestration (kgs/yr)</th>
<th>Pollution removal (kgs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calgary, Canada</td>
<td>164.8</td>
<td>5.60</td>
<td>0.13</td>
<td>4.0</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>275.8</td>
<td>35.64</td>
<td>0.62</td>
<td>44.2</td>
</tr>
<tr>
<td>Toronto, Canada</td>
<td>119.4</td>
<td>14.35</td>
<td>0.29</td>
<td>17.5</td>
</tr>
<tr>
<td>New York, NY</td>
<td>65.2</td>
<td>15.24</td>
<td>0.24</td>
<td>19.1</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>125.5</td>
<td>25.78</td>
<td>0.35</td>
<td>18.6</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td>61.8</td>
<td>14.12</td>
<td>0.21</td>
<td>15.2</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>121.1</td>
<td>29.81</td>
<td>0.46</td>
<td>23.8</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>82.8</td>
<td>20.18</td>
<td>0.33</td>
<td>17.9</td>
</tr>
<tr>
<td>Woodbridge, NJ</td>
<td>164.3</td>
<td>24.21</td>
<td>0.42</td>
<td>31.8</td>
</tr>
<tr>
<td>Minneapolis, MN</td>
<td>64.7</td>
<td>15.02</td>
<td>0.27</td>
<td>18.4</td>
</tr>
<tr>
<td>Syracuse, NY</td>
<td>134.7</td>
<td>24.21</td>
<td>0.38</td>
<td>15.2</td>
</tr>
<tr>
<td>Morgantown, WV</td>
<td>295.8</td>
<td>38.11</td>
<td>0.60</td>
<td>26.7</td>
</tr>
<tr>
<td>Moorestown, NJ</td>
<td>153.2</td>
<td>28.02</td>
<td>0.45</td>
<td>28.2</td>
</tr>
<tr>
<td>Jersey City, NJ</td>
<td>35.3</td>
<td>4.93</td>
<td>0.11</td>
<td>9.6</td>
</tr>
<tr>
<td>Freehold, NJ</td>
<td>95.1</td>
<td>35.87</td>
<td>0.49</td>
<td>37.7</td>
</tr>
</tbody>
</table>
Appendix IV. General Recommendations for Air Quality Improvement

Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmosphere environment. Four main ways that urban trees affect air quality are [62]:

- Temperature reduction and other microclimate effects
- Removal of air pollutants
- Emission of volatile organic compounds (VOC) and tree maintenance emissions
- Energy effects on buildings

The cumulative and interactive effects of trees on climate, pollution removal, and VOC and power plant emissions determine the impact of trees on air pollution. Cumulative studies involving urban tree impacts on ozone have revealed that increased urban canopy cover, particularly with low VOC emitting species, leads to reduced ozone concentrations in cities [63]. Local urban management decisions also can help improve air quality.

Urban forest management strategies to help improve air quality include [63]:

<table>
<thead>
<tr>
<th>Increase the number of healthy trees</th>
<th>Increase pollution removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustain existing tree cover</td>
<td>Maintain pollution removal levels</td>
</tr>
<tr>
<td>Maximize use of low VOC-emitting trees</td>
<td>Reduces ozone and carbon monoxide formation</td>
</tr>
<tr>
<td>Sustain large, healthy trees</td>
<td>Large trees have greatest per-tree effects</td>
</tr>
<tr>
<td>Use long-lived trees</td>
<td>Reduce long-term pollutant emissions from planting and removal</td>
</tr>
<tr>
<td>Use low maintenance trees</td>
<td>Reduce pollutants emissions from maintenance activities</td>
</tr>
<tr>
<td>Reduce fossil fuel use in maintaining vegetation</td>
<td>Reduce pollutant emissions</td>
</tr>
<tr>
<td>Plant trees in energy conserving locations</td>
<td>Reduce pollutant emissions from power plants</td>
</tr>
<tr>
<td>Plant trees to shade parked cars</td>
<td>Reduce vehicular VOC emissions</td>
</tr>
<tr>
<td>Supply ample water to vegetation</td>
<td>Enhance pollution removal and temperature reduction</td>
</tr>
<tr>
<td>Plant trees in polluted or heavily populated areas</td>
<td>Maximizes tree air quality benefits</td>
</tr>
<tr>
<td>Avoid pollutant-sensitive species</td>
<td>Improve tree health</td>
</tr>
<tr>
<td>Utilize evergreen trees for particulate matter</td>
<td>Year-round removal of particles</td>
</tr>
</tbody>
</table>
Appendix V. Invasive Species of the Urban Forest

The following inventoryed species were listed as invasive on the Hawaii invasive species list [2]:

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Number of trees</th>
<th>% Tree Number</th>
<th>Leaf Area (km2)</th>
<th>% Leaf Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiddlewood</td>
<td>49</td>
<td>1.47</td>
<td>0.01</td>
<td>1.24</td>
</tr>
<tr>
<td>Allspice</td>
<td>33</td>
<td>0.99</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>Satinleaf</td>
<td>25</td>
<td>0.75</td>
<td>0.01</td>
<td>1.04</td>
</tr>
<tr>
<td>Thomas' bird's-eye bush</td>
<td>8</td>
<td>0.24</td>
<td>0.00</td>
<td><0.01</td>
</tr>
<tr>
<td>African tulip tree</td>
<td>8</td>
<td>0.24</td>
<td>0.00</td>
<td><0.01</td>
</tr>
<tr>
<td>Schefflera</td>
<td>8</td>
<td>0.24</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>TOTAL</td>
<td>131</td>
<td>3.92</td>
<td>0.01</td>
<td>2.69</td>
</tr>
</tbody>
</table>

1 Species are determined to be invasive if they are listed on the state's invasive species list.
Appendix VII. Potential risk of pests

Based on the host tree species for each pest and the current range of the pest [13], it is possible to determine what the risk is that each tree species sampled in the urban forest could be attacked by an insect or disease.

<table>
<thead>
<tr>
<th>Spp Risk</th>
<th>Risk Weight</th>
<th>Species Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Camphor tree</td>
</tr>
</tbody>
</table>

Note: Species that are not listed in the matrix are not known to be hosts to any of the pests analyzed.

Species Risk:
- Red indicates that tree species is at risk to at least one pest within county
- Orange indicates that tree species has no risk to pests in county, but has a risk to at least one pest within 250 miles from the county
- Yellow indicates that tree species has no risk to pests within 250 miles of county, but has a risk to at least one pest that is 250 to 750 miles from the county
- Green indicates that tree species has no risk to pests within 750 miles of county, but has a risk to at least one pest that is greater than 750 miles from the county

Risk Weight:
Numerical scoring system based on sum of points assigned to pest risks for species. Each pest that could attack tree species is scored as 4 points if red, 3 points if orange, 2 points if yellow and 1 point if green.

Pest Color Codes:
- Red indicates pest is within Honolulu county
- Orange indicates pest is within 250 miles of Honolulu county
- Yellow indicates pest is within 750 miles of Honolulu county
- Green indicates pest is outside of these ranges
References

2. State invasive species lists were compiled for the following:

 Hawaii Invasive Species Partnership. Hawaii’s High-Profile Invasive Species. <http://www.hawaiiinvasivespecies.org/pests/>

 Iowa Department of Natural Resources. Invasive Plant Species. <http://www.iowadnr.gov/forestry/invasive.html>

KY: Kentucky Exotic Pest Plant Council. Center for Invasive Species and Ecosystem Health at the University of Georgia. <http://www.se-eppc.org/ky/list.htm>

 Minnesota Department of Natural Resources. Invasive Aquatic Plants. <http://www.dnr.state.mn.us/invasives/aquaticplants/index.html>

<http://www.mobot.org/mobot/research/mepp/alphabetlist.shtml>

NE: Nebraska Invasive Species Advisory Council. Invasive Plants of Nebraska.

<http://www.unce.unr.edu/publications/files/ag/other/sp9603.pdf>

NH: New Hampshire Department of Agriculture, Markets, and Food. NH Prohibited Invasive Species List.

<http://www.npsnj.org/references/invasive_plant_list.pdf>
<http://www.npsnj.org/invasive_species_0103.htm>

<http://www.ncwildflower.org/invasives/list.htm>

ND: North Dakota Department of Agriculture. Catalogue of Species.
<http://www.agdepartment.com/noxiousweeds/searchweeds.asp>

OR: Oregon Invasive Species Council. 100 Most Dangerous Invaders to Keep Out.
<http://oregon.gov/OISC/most_dangerous.shtml>

SC: South Carolina Exotic Pest Plant Council. Center for Invasive Species and Ecosystem Health at the University of Georgia. <http://www.invasive.org/species/list.cfm?id=27>

9. Insect/disease proximity to study area was completed using the U.S. Forest Service’s Forest Health Technology Enterprise Team (FHTET) database. Data includes distribution of pest by county FIPs code for 2004-2009. FHTET range maps are available at www.foresthealth.info for 2006-2010.

15. Mielke, Manfred E.; Daughtrey, Margery L. How to Identify and Control Dogwood

53. Hirabayashi, S., C. Kroll, and D. Nowak. 2012. i-Tree Eco Dry Deposition Model Descriptions V 1.0

59. Total city carbon emissions were based on 2003 U.S. per capita carbon emissions -
calculated as total U.S. carbon emissions (Energy Information Administration, 2003,
http://www.eia.doe.gov/oiaf/1605/ggrpt/) divided by 2003 U.S. total population
(www.census.gov). Per capita emissions were multiplied by city population to estimate total
city carbon emissions.

60. Average passenger automobile emissions per mile were based on dividing total 2002
pollutant emissions from light-duty gas vehicles (National Emission Trends
http://www.epa.gov/ttn/chief/trends/index.html) divided by total miles driven in 2002 by
passenger cars (National Transportation Statistics

Average annual passenger automobile emissions per vehicle were based on dividing
total 2002 pollutant emissions from light-duty gas vehicles by total number of passenger cars
in 2002 (National Transportation Statistics

Carbon dioxide emissions from automobile assumed six pounds of carbon per gallon
of gasoline if energy costs of refinement and transportation are included (Graham, R.L.,

61. Average household emissions based on average electricity kWh usage, natural gas Btu
usage, fuel oil Btu usage, kerosene Btu usage, LPG Btu usage, and wood Btu usage per
household from: Energy Information Administration. Total Energy Consumption in U.S.
Households by Type of Housing Unit, 2001

CO2, SO2, and NOx power plant emission per KWh from: U.S. Environmental
Protection Agency. U.S. Power Plant Emissions Total by Year
www.epa.gov/cleanenergy/egrid/samples.htm.

CO emission per kWh assumes 1/3 of one percent of C emissions is CO based on:
Countries DOE/EIA-0579.

PM10 emission per kWh from: Layton, M. 2004. 2005 Electricity Environmental
15_03-A_LAYTON.PDF

CO2, NOx, SO2, PM10, and CO emission per Btu for natural gas, propane and butane
(average used to represent LPG), Fuel #4 and #6 (average used to represent fuel oil and

CO2 and fine particle emissions per Btu of wood from: Houck, J.E. Tiegs, P.E,
wood heating option put into environmental perspective. In: Proceedings of U.S. EPA and Air
CO, NOx and SOx emission per Btu based on total emissions and wood burning (tons)
Emissions per dry ton of wood converted to emissions per Btu based on average dry
weight per cord of wood and average Btu per cord from: Heating with Wood I. Species
characteristics and volumes. http://ianrpubs.unl.edu/forestry/g881.htm

63. Nowak, D.J. 2000. The interactions between urban forests and global climate change. In:
Abdollahi, K.K., Z.H. Ning, and A. Appeaning (Eds). Global Climate Change and the Urban