Rare Plant Stabilization on O`ahu, Hawai`i

Matthew Keir
Lauren Weisenberger
Stability Goals

1. Minimum # of population units
2. Minimum # of mature plants
3. Stable population structure
4. All populations in genetic storage
5. All known threats controlled

Reporting & Data needs

- counts: # populations & # plants
- demographic structure: population trends
- genetic storage: founder tracking

Adaptive Management

- measure outplanting success
Biological Variables used in Planning

Determined minimum # of plants:

- Life span: long-lived vs. short-lived
- Mating & breeding system
- Seed bank persistence
- Population trends
- Inconsistent flowering

Delimited population units:

- Pollination biology
- Results from genetic testing
- Geography
- Land ownership

Took a conservative approach to preserving genotypes of individuals
Morphological variation in *Abutilon sandwicense*
Balancing founders at outplanting sites and in ex situ genetic storage

<table>
<thead>
<tr>
<th>Founder Plant Num</th>
<th>Plant Collected?</th>
<th>Founder Dead?</th>
<th>Number of Propagules Available</th>
<th>Founder</th>
<th>Founder</th>
<th>Num @ Army Nurseries</th>
<th>All Reintro Pops from Founder</th>
<th>Reintro Seeds</th>
<th>Reintro Microprop</th>
<th>Reintro ArmyNurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0008</td>
<td>Y</td>
<td>Dead</td>
<td></td>
<td>0</td>
<td>5114</td>
<td>1</td>
<td>729</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Reintro Taxon Code PopRefSite ID</td>
<td>Reintro Target PopRefSite Name</td>
<td>Target Number for Reintro</td>
<td>Num of Plants Reintro Attempt</td>
<td>Num of Plants Dead</td>
<td>+ (More Need)</td>
<td>Plants Needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SchObo.PAH-D</td>
<td>Pahole REINTRO below snail exclusion</td>
<td>33</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for Plant Number: 0008</td>
<td></td>
<td>33</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PopRef Site: SchObo.PAH-C</td>
<td></td>
<td>66</td>
<td>59</td>
<td>6</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Database links founder to outplanted progeny and all ex situ genetic storage collections
Replacement in *S. obovata*

1999 2011

GREEN= Total number of outplants
PURPLE= Total number of mature progeny (F1)
Rare Plant Management Tools

Seed storage: re-collection intervals

Vegetative propagation: cloning

Low seed set: hand-pollination

Outplanting: transport and planting techniques
Seed Storage

Superior form of ex situ genetic storage

1. preserves most genetic diversity
2. least amount of space & energy
3. most likely to withstand natural disaster

“When the climate changes and human disturbances bring tremendous threats to vegetation and the environment, it is seeds that confer on us a great hope to maintain a bright future.”

Dr. Xingguo Han, Chair, Seed Ecology IV
Seed Storage

Long-term Purposes:
1. backup outplantings
2. replace individuals lost to catastrophe

Short-term Purposes:
1. hold while threat control begins
2. propagation & storage research
3. accumulate founders for large, genetically diverse outplantings
Germination of Fresh & Stored Seeds of Viola chamissoniana Ging. subsp. chamissoniana (Violaceae)

Once a decline in viability is detected, the re-collection interval is set for that length of storage time.
<table>
<thead>
<tr>
<th>Taxa in storage</th>
<th>Years without decline in viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanea crispa</td>
<td>≥10</td>
</tr>
<tr>
<td>Cyanea grimesiana subsp. obatae *</td>
<td>10</td>
</tr>
<tr>
<td>Cyanea superba subsp. superba</td>
<td>≥15</td>
</tr>
<tr>
<td>Cyrtandra dentata *</td>
<td>10</td>
</tr>
<tr>
<td>Delissea waianaeensis</td>
<td>≥15</td>
</tr>
<tr>
<td>Dubautia herbstobatae</td>
<td>≥15</td>
</tr>
<tr>
<td>Euphorbia celastroides var. kaenana</td>
<td>≥5</td>
</tr>
<tr>
<td>Flueggea neowawraea *</td>
<td>10</td>
</tr>
<tr>
<td>Hibiscus brackenridgei subsp. mokuleianus</td>
<td>≥10</td>
</tr>
<tr>
<td>Kadua parvula</td>
<td>≥10</td>
</tr>
<tr>
<td>Lobelia koolauensis *</td>
<td>10</td>
</tr>
<tr>
<td>Melanthera tenuifolia</td>
<td>≥10</td>
</tr>
<tr>
<td>Neraudia angulata</td>
<td>≥10</td>
</tr>
<tr>
<td>Sanicula mariversa *</td>
<td>10</td>
</tr>
<tr>
<td>Schiedea kaalae</td>
<td>≥10</td>
</tr>
<tr>
<td>Schiedea nuttallii</td>
<td>≥10</td>
</tr>
<tr>
<td>Schiedea obovata</td>
<td>≥15</td>
</tr>
<tr>
<td>Schiedea trinervis</td>
<td>≥15</td>
</tr>
<tr>
<td>Tetramolopium filiforme</td>
<td>≥15</td>
</tr>
<tr>
<td>Viola chamissoniana subsp. chamissoniana *</td>
<td>10</td>
</tr>
</tbody>
</table>
Securing Propagules

Timing, phenology, logistics & luck
Fruitless Efforts = Vegetative Propagules

Cuttings:
Abutilon
Cenchrus
Eugenia
Eurya
Flueggea
Gardenia
Huperzia
Melanthera
Melicope
Neraudia
Nototrichium
Phyllostegia
Schiedea
Stenogyne
Tetramolopium
Viola

Divisions:
Cenchrus
Phyllostegia
Stenogyne

Grafting:
Flueggea
Hibiscus

Air-layer:
Abutilon
Alectryon
Eugenia
Flueggea
Gardenia
Hesperomannia
Hibiscus
Labordia
Urera
Vegetative propagation for rapidly increasing stock for outplanting and to limit generations in cultivation
Flueggea neowawraea
Air-layers and cuttings collected off wild trees & established in the nursery
Reduced or absent seed set

Dioecious taxa:

- *Flueggea neowawraea*
- *Gardenia mannii*
- *Labordia cyrtandrae*

Presumed avian pollinator absent on O`ahu for:

- *Cyanea sp.*
- *Hesperomannia sp.*
- *Lobelia sp.*

Cyanea grimesiana subsp. obatae
Labordia cyrtandrae
Labordia cyrtandrae
Hand Pollination
Loss of avian pollinators and reduced seed set?
Cyanea superba subsp. superba

Seedlings under outplants

Mature Fruit
Cyanea superba subsp. superba
Cyanea st.-johnii
Cyanea st.-johnii
Cross treatment marginally affected the number of seeds per fruit (GLM1, $F = 2.957$, df = 3, $p = 0.054$). Hand pollinating increases the number of seeds a fruit produces in comparison to open pollinated fruit ($t = 3.45$, df = 25, $p = 0.002$).
Outplanting

Nursery sanitation

Plant transport
Outplanting
Mahalo

Hesperomannia oahuensis 😊