Effects of the Teaching Science as Inquiry (TSI) Aquatic Professional Development Course for Middle- and High-School Teachers

Kanesa Seraphin, Joanna Philippoff, George M. Harrison, Lisa M. Vallin, Lauren Kaupp, Brian E. Lawton, and Paul R. Brandon

University of Hawaii at Manoa
Teaching Science as Inquiry (TSI)

TSI grew out of need to define inquiry (Duncan Seraphin & Baumgartner, 2010)

- Inquiry difficult to define, and can be hard to understand

TSI philosophy

- In order to increase scientific literacy, science should be taught and learned as it is practiced within the discipline of science
- Students learn science by engaging in the authentic process of science

TSI Pedagogical framework articulates what inquiry is and how inquiry can be defined
TSI Pedagogical Framework

- Captures nature of science by emphasizing relationship between process and content
- Explicit instruction on interconnected components of inquiry allows teachers to access the scientific process and provides a structure to implementing inquiry in the classroom
- Common language to describe scientific process
Both a learning and instructional cycle

Multi-directional, no prescribed sequence or path, captures what actually happens during a scientific inquiry

Instruction, or communication, influences the other phases. This creates an environment where the teacher acts as a research director and is not the sole source of knowledge in the classroom

Tool to examine fine-scale acquisition of knowledge
TSI: Modes of Inquiry

10 modes: Reflect variety of ways to do scientific inquiry and the multiple approaches to knowledge generation

- Curiosity
- Description
- Authoritative Knowledge
- Experimentation
- Product Evaluation
- Technology
- Replication
- Induction
- Deduction
- Transitive Knowledge
Aquatic Science Content

- Water is critical to our survival
 - 72% of the surface of the planet is water
 - 50-75% of our bodies are composed of water
 - Impacts everything from weather and climate to economics and tourism

- Using aquatic science as a cohesive umbrella under which various content from different disciplines can be taught enhances inquiry understanding and allows for deeper understanding of the scientific process. (National Research Council, 2012)

- Content guided by the Ocean Literacy Principles (College of Exploration, 2008)
TSI Aquatic PD Goals

1) Increase teachers’ content knowledge in aquatic science

2) Improve teachers’:
 - understanding of scientific inquiry,
 - pedagogical content knowledge needed to create classrooms that function as a community of scientists, and
 - self-efficacy in using TSI pedagogy.

3) Improve student content knowledge and nature of science knowledge
TSI Aquatic
Accessible Professional Development Structure

- Introductory Meeting
- Online Follow-up
- Interactive Online Learning Community
- Workshop 1: Introductory & Physical Aquatic Science
 Pedagogical foundation module
- Workshop 2: Chemical Aquatic Science
- Workshop 3: Biological Aquatic Science
- Workshop 4: Ecological Aquatic Science
- Face to Face Follow-up

- 4 Modules embedded in and connected through asynchronous interactive online learning community
- In each module teachers have to implement a minimum of 3 activities
TSI Aquatic PD Focus, Themes, and Content

<table>
<thead>
<tr>
<th>Module</th>
<th>TSI Aquatic focus</th>
<th>Themes</th>
<th>Content</th>
</tr>
</thead>
</table>
| Module 1 Physical | Begin to build understanding of disciplinary inquiry as a process
Use TSI phases and modes to reflect and become more metacognitive | Metacognition
Community
Science as a human endeavor | Investigate the influence of density, wind, waves, tides and the ocean floor on global ocean circulation |
| Module 2 Chemical | Further understanding of disciplinary inquiry through the TSI phases and modes
Guide students through the TSI phases to enhance learning | Observation and inference
Modeling science | Build an understanding of the water molecule and the unique properties of water |
| Module 3 Biological | Guide students through the phases and modes of inquiry using TSI inquiry questioning strategies | Scientific language
Questioning strategies | Explore aquatic diversity, focusing on structure, function, and the evolutionary connections between organisms |
| Module 4 Ecological | Further understanding of disciplinary inquiry by becoming familiar with the TSI practices of inquiry teaching and transferring TSI pedagogy to your own lessons | Connections | Apply physical, chemical, and biological principles to the investigation of an aquatic environment |

Module structure enables scaffolding of inquiry pedagogy and content and allows assessment of inquiry understanding over time.
TSI Professional Development Cohorts

- Kaua’i ★ 2012-13
- O’ahu ★ 2010-12 ★ 2012-13
- Maui ★ 2011-12
- Hawaiʻi ★ 2011-12

2012-2013 cohorts were pilot test of PD
Research Plan and Design

- **Years 1–2 (2010-2012):**
 - Developed, pilot-tested, and validated instruments with Cohorts I-III.
 - Provided formative evaluation feedback to PD developers.
- **Year 3 (2012-2013):**
 - Conducted a study of the pilot version of the PD using a pre/post within-participants design.
Instrument Foci

1. Teacher background (questionnaire)
2. Professional development activities (observations and a teacher questionnaire)
3. Teacher outcomes (two teacher assessments, questionnaires on pedagogical content knowledge, meta-cognition, and self-efficacy, and an interview)
4. Classroom implementation of TSI (observation, a teacher log, and a teacher interview)
5. Student outcomes (one content assessment and one nature-of-science assessment)
Data Collection

Pre

Teacher questionnaires and a classroom observation

Teacher assessments and questionnaires
Student assessments

Teacher background questionnaire

Teacher interview

Post
Data Collection in Each Module

Module 1

Mod 2

Mod 3

Mod 4

Lesson logs
Questionnaires

Teacher content assessment

Pre

Post

--Repeated each module--
The Research Topics Addressed in This Poster

- Pre-post changes in teacher outcome variables
- Extent to which teachers’ (a) prior experience, knowledge, and pedagogical practice and (b) program implementation variables affected student outcomes
Teachers’ Background ($N = 28$)

- **Grade Level**
 - Elementary School ($n = 2$)
 - Middle School ($n = 15$)
 - High School ($n = 11$)

- **Subjects Taught**

- **Majors**
 - Science: ($n = 14$)
 - Education: ($n = 9$)
 - Other: ($n = 5$)

- **No. Years Teaching Science**
 - 1–2 ($n = 6$)
 - 3–4 ($n = 2$)
 - 5–6 ($n = 3$)
 - 7–8 ($n = 3$)
 - 9–10 ($n = 4$)
 - > 10 ($n = 10$)
Analyses

- Descriptive teacher and student statistics
- Paired t-test on each teacher outcome
- Multilevel model on each of the two student outcomes
 - time (pre to post) nested within students nested within teachers’ classes
Teacher Outcome Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Time</th>
<th>N Items</th>
<th>M (SD)</th>
<th>Cronbach’s α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogical Content Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>36</td>
<td>3.84 (0.36)</td>
<td>.87</td>
<td></td>
</tr>
<tr>
<td>post</td>
<td>36</td>
<td>3.93 (0.36)</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td>Self-efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>15</td>
<td>3.52 (0.99)</td>
<td>.97</td>
<td></td>
</tr>
<tr>
<td>post</td>
<td>15</td>
<td>4.79 (0.67)</td>
<td>.96</td>
<td></td>
</tr>
<tr>
<td>Metacognition in Teaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>10</td>
<td>4.37 (0.42)</td>
<td>.86</td>
<td></td>
</tr>
<tr>
<td>post</td>
<td>10</td>
<td>4.48 (0.65)</td>
<td>.89</td>
<td></td>
</tr>
</tbody>
</table>

Note. Results are from the 28 teachers (15 on Oahu and 13 on Kauai) who completed the project.

a Response categories ranged from 1 (never) to 5 (always) (Hedges’ *g* = 0.24, *p* = .21).

b This questionnaire was administered in a retrospective pre-post design. Response categories ranged from 1 (low ability) to 6 (high ability). The pre-post mean difference was significant (Hedges’ *g* = 1.50, *p* < .01).

c Response categories ranged from 1 (strongly disagree) to 5 (strongly agree) (Hedges’ *g* = 0.18, *p* = .38).
Teacher Content Assessment Results

<table>
<thead>
<tr>
<th>Instrument</th>
<th>N Teachers</th>
<th>N items</th>
<th>M<sup>a</sup></th>
<th>SD</th>
<th>KR-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1 Pre</td>
<td>31</td>
<td>29</td>
<td>19.39 (67%)</td>
<td>5.33</td>
<td>.83</td>
</tr>
<tr>
<td>Module 1 Post</td>
<td>31</td>
<td>29</td>
<td>22.68 (78%)</td>
<td>4.58</td>
<td>.82</td>
</tr>
<tr>
<td>Module 2 Pre</td>
<td>29</td>
<td>38</td>
<td>25.14 (66%)</td>
<td>7.15</td>
<td>.87</td>
</tr>
<tr>
<td>Module 2 Post</td>
<td>29</td>
<td>38</td>
<td>30.10 (79%)</td>
<td>5.88</td>
<td>.86</td>
</tr>
<tr>
<td>Module 3 Pre</td>
<td>28</td>
<td>36</td>
<td>19.71 (55%)</td>
<td>5.62</td>
<td>.80</td>
</tr>
<tr>
<td>Module 3 Post</td>
<td>28</td>
<td>36</td>
<td>24.00 (67%)</td>
<td>5.58</td>
<td>.81</td>
</tr>
<tr>
<td>Module 4 Pre</td>
<td>28</td>
<td>32</td>
<td>15.25 (45%)</td>
<td>4.39</td>
<td>.66</td>
</tr>
<tr>
<td>Module 4 Post</td>
<td>28</td>
<td>32</td>
<td>19.96 (59%)</td>
<td>4.90</td>
<td>.75</td>
</tr>
</tbody>
</table>

Note. All pre-post differences were significant (p < .0001).

^aPercents are percent-correct scores.
Student Nature of Science and Content Assessments Results

<table>
<thead>
<tr>
<th>Instrument</th>
<th>N students</th>
<th>M</th>
<th>SD</th>
<th>Min, Max</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOS Pre<sup>a</sup></td>
<td>578</td>
<td>0.95</td>
<td>0.86</td>
<td>-1.14, 5.01</td>
<td>.89</td>
</tr>
<tr>
<td>NOS Post<sup>a</sup></td>
<td>440</td>
<td>1.07</td>
<td>1.05</td>
<td>-1.14, 3.77</td>
<td>.84</td>
</tr>
<tr>
<td>Content Pre<sup>b</sup></td>
<td>578</td>
<td>-0.32</td>
<td>0.71</td>
<td>-2.15, 1.66</td>
<td>.44</td>
</tr>
<tr>
<td>Content Post<sup>b</sup></td>
<td>440</td>
<td>-0.04</td>
<td>0.86</td>
<td>-2.93, 4.19</td>
<td>.56</td>
</tr>
</tbody>
</table>

Note. Respective pre and post scores are on a Rasch-modeled logit scale after equating. Reliability was based on the IRT test-information function.

^aNOS = Nature of science assessment scores, comprising 27 items (16 multiple choice; 11 Likert scale items) scored using partial-credit Rasch modeling.

^bContent = Content assessment scores, comprising 17 multiple-choice items that measured knowledge of physical, chemical, biological, and ecological science concepts and knowledge.
Teacher-Level Predictors in the Multilevel Model

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Scale</th>
<th>M</th>
<th>SD</th>
<th>Cronbach’s α</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Years Teaching Science<sup>a</sup></td>
<td>0 and up</td>
<td>9.25</td>
<td>6.96</td>
<td>—</td>
</tr>
<tr>
<td>Prior Research Experience<sup>a</sup></td>
<td>1 to 5</td>
<td>1.57</td>
<td>1.45</td>
<td>—</td>
</tr>
<tr>
<td>No. Science PD Courses Taken<sup>a</sup></td>
<td>1 to 4</td>
<td>2.35</td>
<td>1.19</td>
<td>—</td>
</tr>
<tr>
<td>Pre Pedagogical Content Knowledge<sup>b</sup></td>
<td>1 to 5</td>
<td>3.84</td>
<td>0.36</td>
<td>.87</td>
</tr>
<tr>
<td>Pre Metacognitive Practice<sup>b</sup></td>
<td>1 to 5</td>
<td>4.37</td>
<td>0.42</td>
<td>.86</td>
</tr>
<tr>
<td>Pre Aggregate Content Score<sup>c</sup></td>
<td>0 to 100</td>
<td>58.74</td>
<td>14.63</td>
<td>.91</td>
</tr>
<tr>
<td>Adherence<sup>d</sup></td>
<td>1 to 6</td>
<td>5.03</td>
<td>0.64</td>
<td>.91</td>
</tr>
<tr>
<td>Exposure<sup>d</sup></td>
<td>1 to 6</td>
<td>4.61</td>
<td>0.79</td>
<td>.89</td>
</tr>
</tbody>
</table>

^aEach variable was a single item on the background questionnaire. The range of no. years teaching science was 1 to 30; the scale for prior research was 1 = very little to 5 = extensive experience; the scale for no. of science PD courses taken was 1 = 0; 2 = 1–2 courses; 3 = 3–4 courses; 4 = 5 or more courses.

^bThe score was based on self-report data at the start of the project.

^cAssessed at the start of each module. The reliability is of the four content scores in percentage points.

^dThese were sets of items self-reported at the end of the project. Adherence = mean response to 4 items asking about adherence to the TSI classroom activities; exposure = mean response to 10 items asking how often they included the modes.
Multilevel Modeling Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NOS</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>SE</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.85***</td>
<td>0.08</td>
</tr>
<tr>
<td>Time(^a)</td>
<td>0.11*</td>
<td>0.05</td>
</tr>
<tr>
<td>(School Level)*Time(^b)</td>
<td>-0.06</td>
<td>0.09</td>
</tr>
<tr>
<td>(No. Years Teaching Science)*Time(^c)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(Prior Research Experience)*Time(^c)</td>
<td>-0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>(No. Science PD Courses Taken)*Time(^c)</td>
<td>-0.20***</td>
<td>0.05</td>
</tr>
<tr>
<td>(Pre Pedagogical Content Knowledge)*Time(^c)</td>
<td>-0.11*</td>
<td>0.05</td>
</tr>
<tr>
<td>(Pre Metacognitive Practice)*Time(^c)</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>(Pre Aggregate Content Score)*Time(^c)</td>
<td>-0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>(Adherence)*Time(^c)</td>
<td>0.12*</td>
<td>0.05</td>
</tr>
<tr>
<td>(Exposure)*Time(^c)</td>
<td>0.03</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Note. Time was Level 1, Student was Level 2 (random intercepts and slopes), and Teacher (random intercepts) was Level 3; * = \(p < .05\); ** = \(p < .01\); *** = \(p < .001\).
\(^a\)Time was coded 0 for pre and 1 for post.
\(^b\)School level was coded -1 for elementary, 0 for middle, and 1 for high school.
\(^c\)These predictors were standardized.
Next Steps in the Analyses

- Examine the results for additional quantitative variables (e.g., adherence for each module, ratings of teachers’ understanding of inquiry).
- Examine observation results collected on a subset of the teachers.
- Examine teacher interview results
- Refine the multilevel model, if necessary
Conclusions

- Teacher pre/post-project gains in science content knowledge and self-efficacy were significant.
- Accounting for the nesting of students within teachers’ classes, student pre/post-project gains were significant in:
 - understanding of the nature of science
 - knowledge of aquatic science content
- Teachers with lower levels of prior experience and training showed significantly greater student improvement than teachers with greater levels of experience and training.
- Teachers adhering more closely to the project showed significantly greater student improvement than teachers with weaker adherence.
The research reported here was supported by the Institute for Educational Sciences, US Department of Education, through Grant R305A10091 to the University of Hawaii (UH) at Manoa.

This research was approved by the UH Committee on Human Subjects CHS #15657.