A Strife of Interests: Challenges for Sentiment Analysis of Informal Political Discourse

Tony Mullen
Department of Computer Science
Tsuda College, Japan
mullen@tsuda.ac.jp

Robert Malouf
Department of Linguistics and Oriental Languages
San Diego State University
rmalouf@mail.sdsu.edu
Introduction

• Motivation and challenges for political sentiment analysis
• The politics.com dataset
• Classification by agreement grouping (graph-based)
• Sentiment-based approaches
• Discussion and conclusions
Sentiment analysis

• Identifying opinions, favorability judgments, etc. in NL texts.
• Usually applied to texts with explicit opinion intent: reviews, customer feedback, etc.
• Treated as a classification task
• Supervised, unsupervised ML, shallow linguistics.
Analyzing political opinion

• Possible applications:
 – Analyzing political trends/Augmenting opinion polling data
 – Targeting advertising and communications such as notices, donation requests, or petitions
 – Identifying political bias, e.g. in news texts
What is informal political discourse?

• Informal political discourse can be found in
 – Online forums
 – Newsgroups/mailing lists
 – Blogs
 – Online publications reader feedback sections
 – Social Networking Services

• Often organized as linear threads by topic.

• Discourse is “informal”; written quickly, as thought.

• Overall discourse not real-time, but individual exchanges may be near real-time.
Idiosyncrasies of informal political discourse

• Informal
 – Rampant spelling errors
 – Casual usage (sentence fragments, etc.)

• Political
 – Jargon, names, non-dictionary terms

• Informal *and* political
 – Specific jargon, terms of abuse (“wingnuts”, “moonbats”)
 – Satirical re-spellings of known words (“Raygun”, “Repugnicans”, “Dumbocrats”)
Sentiment analysis of informal political discourse

• What is “political opinion?”
 – SA often considers a binary “thumbs up” vs “thumbs down” classification
 – This is too simple to represent political opinion.
• Political attitudes encompass a variety of favorability judgments
• Relations between judgments are not always clear; e.g., in the US political domain anti-abortion judgment often corresponds to pro-death penalty judgment.
Possible goals for political SA

• Aside from binary judgments about a specific issue, candidate, or proposal, we might want to:
 – Identify political party affiliation
 – Classify according to some more general taxonomy, e.g. right vs left
 – Gauge the “extremeness” or distance from a politically centrist position of the writer’s views
 – Evaluate the degree of confidence with which the writer expresses views
 – Evaluate the degree of agreeability/argumentativeness with which the writer communicates
 – Identify particular issues of special importance to the writer
Classifying political attitudes

• As a preliminary task, we opted for the simplest classification scheme we could think of:
 – right
 – left
 – other

• Many viewpoints do not fit tidily on the left/right line, and “other” is so general as to be essentially noise
The data

- Data from the (now defunct) www.politics.com discussion site
- 77,854 posts organized by topic thread
- 408 individual posters
- Number of posts follows a Zipf-like distribution, with 19% of posters logging only a single post.
- Greatest number of posts by a single poster is 6885, second is 3801
Identifying quotes

- Each post broken into “chunks” based upon typographical cues such as new lines, quotes, boldface, and italics, to identify sections of the post which are quoted from previous posts.

- Chunks of three words or greater which are complete substrings of previous posts are considered quotes.

- The database is broken into 229,482 individual chunks, of which 22,391 are identified as quotes from other posts.
Supplementary data

• Additional data from the web was used to support spelling correction
 – 6481 politically oriented syndicated columns from right and left leaning websites, to provide professionally edited spellings of domain specific terms
 – A wordlist of email, chat, and text message slang, including such terms as “lol” meaning “laugh out loud”
Political affiliation in the data

• Posters have a self-described political affiliation.
• After some hand-editing, nine modified labels were identified:
 – Republican
 – Conservative
 – R-fringe
 – Democrat
 – Liberal
 – L-fringe
 – Centrist
 – Independent
 – Libertarian
Classes to stated affiliation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>34%</td>
<td>Republican</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservative</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-fringe</td>
<td>5</td>
</tr>
<tr>
<td>Left</td>
<td>37%</td>
<td>Democrat</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberal</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-fringe</td>
<td>6</td>
</tr>
<tr>
<td>Other</td>
<td>28%</td>
<td>Centrist</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Libertarian</td>
<td>22</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td>151</td>
</tr>
</tbody>
</table>
Naïve Bayes lexical model

• First, we used naïve Bayes to classify posts lexically as Left or Right
• “Other” users were disregarded
• Total number of users were 96 left, and 89 right, so the baseline was 51.9%
• Lexical model performed at 60.4%
Observations on the lexical model

• Unlike with topic identification, arguments from both sides of an issue use many of the same terms.
• Irregular spellings are harmful to lexical models, necessitating far more training data.
• Skewed distribution of posting frequency means that frequent posters are better modeled than infrequent posters.
Some adjustments

• Restricting experiments to frequent posters (500+ words)
 – Baseline 50%
 – Naïve Bayes: 61.38%
 – With spelling correction: 64.48%

• Human gold standard 87.5% for all users, 91% for frequent posters
Quote patterns

• Of 41,605 posts 4,583 contained quoted material
• Strong tendency to quote users from opposite end of political spectrum
 – Left quoted right: 62.2%
 – Right quoted left: 77.5%
Classification by quote

• For frequent posters:
 – For those who quote/are quoted: 83.53
 – Overall: 79.38

• However, this assumes that we know the class of the quoted poster
Using user citation graph information

• Created a graph with each user as a node and each quote an edge
• Singular value decomposition on graph’s adjacency matrix to compute a “citation space” in which distances between users could be measured
• Derived equivalence classes via alliance/agreement patterns
Using user citation graph information

- Graph-based clustering + NB yielded 68.48% accuracy for all users, 73% for frequent posters
Sentiment Analysis of Texts

• Assumptions
 – Political attitudes are (the same as analogous to composed of) the kind of opinions found in reviews
 – Political discussion is rhetorically similar in some significant respect to opinion/review writing
PMI-IR Sentiment Analysis

• Turney (2002) used PMI-IR to do sentiment analysis for reviews
• Unsupervised approach to finding positive or negative nuance for words and phrases (Semantic Orientation)
• PMI-IR values found between phrase and “excellent” and “poor”
• Turney used entire Internet (via AltaVista) as training data
PMI-IR Sentiment Analysis

$$\text{PMI}(\text{word}_1, \text{word}_2) = \log_2 \left(\frac{p(\text{word}_1 \& \text{word}_2)}{p(\text{word}_1)p(\text{word}_2)} \right)$$

$$\text{SO}(\text{phrase}) = \text{PMI}(\text{phrase}, "\text{excellent}") - \text{PMI}(\text{phrase}, "\text{poor}")$$
Simple PMI-IR inspired political classification

\[
SO(phrase) = PMI(phrase, "liberal") - PMI(phrase,"conservative")
\]

- Derived SO values from Reuters corpus
- Results considerably below baseline
Simple PMI-IR inspired political classification

- Possible reasons for poor performance
 - Wrong choice of contrast terms?
 - Inadequate training data?
 - Deeper assumptions mistaken?
Single-Issue PMI-IR Vectors

• Assume that political attitudes are collections of positive/negative judgements on single, hot-button issues
• Draw up a list of politically contentious words/terms/names
• From each poster, select all sentences containing each of these terms
• Evaluate using PMI-IR to get an SO score for each concept
• SVM model with resulting feature vectors
Single-Issue PMI-IR Vectors

• Created approximately 100 contentious concepts by hand, intuitively likely to distinguish right from left in American political discussion.
• Turney’s Waterloo Multitext system to derive SO values
• No deviation from the baseline
What are the problems?

• As usual, data is sparse
• Political opinions expressed more obliquely than, e.g. movie reviews?
• Rhetorical goals different?
 – Reviews are written to express/describe/justify opinions
 – Political discussion posts treat underlying opinions as given and focus on convincing and/or attacking
Conclusions

• Patterns of agreement/disagreement more salient than actual opinion content
• Political discussion more than just a description of opinions on various topics
• PMI-IR based methods not promising for informal political text analysis
Thank you