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Abstract: In this paper, we model the supply chain network design problem with oligopolis-

tic firms who are involved in the competitive production, storage, and distribution of a homo-

geneous product to multiple demand markets. The profit-maximizing firms select both the

capacities associated with the various supply chain network activities as well as the product

quantities. We formulate the governing Nash-Cournot equilibrium conditions as a variational

inequality problem and identify several special cases of the model, notably, a generalization

of a spatial oligopoly and a classical oligopoly problem to include design capacity variables.

The proposed computational approach, which is based on projected dynamical systems, fully

exploits the network structure of the problems and yields closed form solutions at each it-

eration. In order to illustrate the modeling framework and the algorithm, we also provide

solutions to a spectrum of numerical supply chain network oligopoly design examples.

This paper makes a contribution to game theoretic modeling of competitive supply chain

network design problems in an oligopolistic setting.

Keywords: profit-maximizing supply chains, supply chain design, network oligopolies, game

theory, Nash equilibria, variational inequalities, projected dynamical systems
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1. Introduction

Oligopolies are a fundamental economic organizational structure and capture numerous

industries and their associated products and services ranging from airlines to particular re-

tailers as well as high technology manufacturers, telecommunication companies, and specific

energy providers. Hence, the formulation, analysis, and solution of oligopoly problems are all

of wide theoretical and application-based interest in both economics and operations research

(cf. Gabay and Moulin (1980), Murphy, Sherali, and Soyster (1982), Dafermos and Nagur-

ney (1987), Tirole (1988), Flam and Ben-Israel (1990), Okuguchi and Szidarovsky (1990),

Nagurney (1993, 2006a), Nagurney, Dupuis, and Zhang (1994), and the references therein).

In addition, there has been growing interest in the modeling of oligopolies in a supply chain

network context, derived, in part, from the recent, notable mergers and acquisitions of firms

in such industries as: beverage, airline, financial services, and oil (cf. Nagurney (2009a),

Nagurney and Qiang (2009), and the references therein), and the associated need to be able

to identify and quantify potential synergies.

In particular, in this paper, we consider the modeling of the explicit supply chain net-

work design problem in the context of oligopolies consisting of firms who compete in a Nash

(1950, 1951)-Cournot (1838) framework. As noted in Brown et al. (2001), more firms now

understand the potential benefits of controlling the supply chain as a whole. In this paper,

we assume that the firms produce a homogeneous good and compete in a noncooperative

manner. As in Nagurney (2009a,b), we depict each firm as a network of its economic activ-

ities of production, storage, and distribution to demand markets. Of course, the modeling

of mergers and acquisitions in a supply chain network context (cf. Nagurney (2009a,b),

Nagurney, Woolley, and Qiang (2009), and Nagurney and Woolley (2009)) may be viewed

as a supply chain network design problem, broadly classified. However, in this paper, we

make explicit the design variables associated with profit-maximizing, competing firms and

their supply chains.

The supply chain network design model developed in this paper extends the aforemen-

tioned supply chain network models in several significant ways. First, here we explicitly

consider oligopolistic behavior and associate demand market price functions with the de-

mand markets, whereas Nagurney (2009b) assumed known demands and assumed that the
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link capacities were fixed and assigned a priori. In addition, we extend the (pre-merger)

oligopolistic supply chain network model of Nagurney (2009a), substantively, by allowing

for competition on the production side, in distribution and storage, and, finally, across the

demand markets. Moreover, the capacities are now strategic decision variables. Finally, we

also extend the original supply chain network design model of Nagurney (2009c), in which

there is a single, cost-minimizing firm faced with known demands at the markets for its prod-

uct and, hence, there is no competition. For flexibility, clarity, and continuity, the multifirm,

multimarket, supply chain network design model developed in this paper is formulated as

a variational inequality problem (cf. the book by Nagurney (1993), which also contains

some of the history of the evolution of network models of firms and numerous network-based

economic models).

Supply chain network equilibrium models, initiated by Nagurney, Dong, and Zhang (2002)

have been developed, which focus on competition among decision-makers (such as manufac-

turers, distributors, and retailers) at a tier of the supply chain but cooperation between tiers.

The relationships of such supply chain network equilibrium problems to transportation net-

work equilibrium problems, which are characterized by user-optimizing behavior have also

been established (cf. Nagurney (2006a,b)). Zhang, Dong, and Nagurney (2003) and Zhang

(2006), on the other hand, modeled competition among supply chains in a supply chain

economy context, but did not consider explicit firms. See the book by Nagurney (2006a) for

a spectrum of supply chain network equilibrium models and applications.

The supply chain network design model developed in this paper, in contrast to the ones

immediately above, is more detailed, since it is at the level of the firms. In addition, the

model in this paper is the first to capture the design aspects of profit-maximizing oligopolistic

firms, who compete in multiple functions of production, distribution, and storage, and who

seek to determine not only the quantities of the product but also the capacities of the

various manufacturing plants, distribution centers, etc. In addition, in this paper, we identify

special cases of the proposed model. Furthermore, unlike much of the classical supply chain

network literature (cf. Beamon (1998), Min and Zhou (2002), Handfield and Nichols Jr.

(2002), and Meixell and Gargeya (2005) for surveys and Geunes and Pardalos (2003) for

an annotated bibliography) in our framework we do not need discrete variables and we use

continuous variables exclusively in our model formulations. In addition, we are not limited

3



to linear costs; but, rather, the model can handle nonlinear costs, which can capture the

reality of today’s networks from transportation to telecommunication ones, which may be

congested (cf. Nagurney and Qiang (2009)), and upon which supply chains depend for their

functionality. The solution of our oligopolistic supply chain network design model yields the

optimal supply chain network topology since those links with zero optimal capacities can, in

effect, be eliminated.

This paper is organized as follows. In Section 2, we develop the supply chain network

design model in which the firms seek to determine the capacities associated with manufac-

turing plants, distribution centers, and shipment links, as well as the production quantities

so as to maximize their profits and to satisfy the associated demand at the multiple de-

mand markets. We consider competition in production, distribution, and storage, in that

we allow the underlying functions to depend on the flows not only of the particular firm

but, in general, on the product flows of all the firms. In addition, we assume that the de-

mand price of the product at any given demand market may, in general, depend upon the

demand for the product at every market. Hence, we also assume the general situation that

there is competition on the demand side. We provide the game theoretic formulation of the

problem, state the governing Nash-Cournot equilibrium conditions, and provide alternative

variational inequality formulations. In addition, we identify several oligopoly models that

are special cases of the new model and that also enhance (since they include capacities as

strategic decision variables) more classical models, be they spatial (see, e.g., Dafermos and

Nagurney (1987)) or aspatial (cf. Cournot (1838) and Nagurney (1993) and the references

therein).

In Section 3, we consider the solution of the supply chain network design model. We

propose the Euler method, which is a special case of the general iterative scheme introduced

by Dupuis and Nagurney (1993) for the determination of stationary points of projected dy-

namical systems; equivalently, solutions of variational inequality problems. We demonstrate

that, in the context of the model, the Euler method resolves the supply chain network de-

sign problem into subproblems that can be solved, at each iteration, explicitly and in closed

form. We provide the associated formulae. A variety of network economic equilibrium

problems (and the associated tatonnement/adjustment processes) have been modeled and

solved to-date as projected dynamical systems, including dynamic spatial price problems
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Figure 1: The Initial Supply Chain Network Topology of the Oligopoly

(see Nagurney, Takayama, and Zhang (1995) and Nagurney and Zhang (1996a)), dynamic

network oligopolies (cf. Nagurney, Dupuis, and Zhang (1994)), and dynamic traffic network

equilibrium problems (see, e.g., Zhang and Nagurney (1997) and Yang and Zhang (2009)).

In Section 4, we provide numerical examples. In Section 5, we summarize the results in

this paper and give suggestions for future research.

2. The Supply Chain Network Design Model

In this Section, we develop the supply chain network design model with profit-maximizing

firms and identify several special cases. We consider a finite number of I firms, with a

typical firm denoted by i, who are involved in the production, storage, and distribution of a

homogeneous product and who compete noncooperatively in an oligopolistic manner.

We assume that each firm is represented as an initial network of its economic activities

(cf. Figure 1). Each firm seeks to determine its optimal link capacities and product quan-

tities by using Figure 1 as a schematic. Each firm i; i = 1, . . . , I, hence, is considering

ni
M manufacturing facilities/plants; ni

D distribution centers, and serves the same nR retail
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outlets/demand markets. Let L0
i denote the set of directed links representing the economic

activities associated with firm i; i = 1, . . . , I and let nL0
i

denote the number of links in L0
i

with nL0 denoting the total number of links in the initial network L0, where L0 ≡ ∪i=1,IL
0
i .

Let G0 = [N0, L0] denote the graph consisting of the set of nodes N0 and the set of links L0

in Figure 1. Once the supply chain design problem is solved, those links with zero optimal

capacities (and, hence, also zero product flows) can, in effect, be eliminated from the final

supply chain network design topology.

The links from the top-tiered nodes i; i = 1, . . . , I, representing the respective firm, in

Figure 1 are connected to the manufacturing nodes of the respective firm i, which are denoted,

respectively, by: M i
1, . . . ,M

i
ni

M
, and these links represent the manufacturing links. The links

from the manufacturing nodes, in turn, are connected to the distribution center nodes of

each firm i; i = 1, . . . , I, which are denoted by Di
1,1, . . . , D

i
nD

i,1. These links correspond

to the shipment links between the manufacturing plants and the distribution centers where

the product is stored. The links joining nodes Di
1,1, . . . , D

i
ni

D,1 with nodes Di
1,2, . . . , D

i
ni

D,2 for

i = 1, . . . , I correspond to the storage links. Finally, there are possible shipment links joining

the nodes Di
1,2, . . . , D

i
ni

D,2 for i = 1, . . . , I with the demand market nodes: R1, . . . , RnR
.

We emphasize that the network topology in Figure 1, which corresponds to G0 is given

here for descriptive purposes and, for definiteness. In fact, the model, described fully below,

can handle any prospective supply chain network topology provided that there is a top-tiered

node to represent each firm and bottom-tiered nodes to represent the demand markets with

a sequence of directed links, corresponding to at least one path, joining each top-tiered node

with each bottom-tiered node. The solution of the complete model will identify which links

have positive capacities and, hence, should be retained in the final supply chain network

design.

We assume that associated with each link (cf. Figure 1) of the network corresponding

to each firm i; i = 1, . . . , I is a total cost associated with operating the link over the time

horizon under consideration. We also assume that there is a total design cost associated

with each link. We denote, without any loss in generality, the links by a, b, etc., the total

operational cost on a link a by ĉa and the total design cost by π̂a, for all links a ∈ L0.

Let dRk
denote the demand for the product at demand market Rk; k = 1, . . . , nR. Let xp
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denote the nonnegative flow of the product on path p joining (origin) node i; i = 1, . . . , I

with a (destination) demand market node. Then the following conservation of flow equations

must hold: ∑
p∈P 0

Rk

xp = dRk
, k = 1, . . . , nR, (1)

where P 0
Rk

denotes the set of paths connecting the (origin) nodes i; i = 1, . . . , I with (des-

tination) demand market Rk. In particular, we have that P 0
Rk

= ∪i=1,...,IP
0
Ri

k
, where P 0

Ri
k

denotes the set of paths from origin node i to demand market k as in Figure 1.

According to (1), the demand at each demand market must be equal to the sum of the

product flows from all firms to that demand market.

We assume that there is a demand price function associated with the product at each

demand market. We denote the demand price at demand market Rk by ρRk
and we assume,

as given, the demand price functions:

ρRk
= ρRk

(d), k = 1, . . . , nR, (2)

where d is the nR-dimensional vector of demands at the demand markets. We assume that all

vectors in this paper are column vectors. Note that we consider the general situation where

the price for the product at a particular demand market may, in general, depend upon

the demand for the product at the other demand markets. We assume that the demand

price functions are continuous, continuously differentiable, and monotone decreasing. Note

that the consumers at each demand market are indifferent as to which firm produced the

homogeneous product.

In addition, we let fa denote the flow of the product on link a. Hence, we must also have

the following conservation of flow equations satisfied:

fa =
∑

p∈P 0

xpδap, ∀a ∈ L0, (3)

where δap = 1 if link a is contained in path p and δap = 0, otherwise. Here P 0 denotes the

set of all paths in Figure 1, that is, P 0 = ∪k=1,...,nR
P 0

Rk
. There are nP 0 paths in the network

in Figure 1. We use P 0
i to denote the set of all paths from firm i to all the demand markets

for i = 1, . . . , I. There are nP 0
i

paths from the firm i node to the demand markets.
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Of course, we also have that the path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P 0. (4)

Let ua, a ∈ L0, denote the design capacity of link a, where we must have that

fa ≤ ua, ∀a ∈ L0, (5)

or, in view of (3) ∑
p∈P 0

xpδap ≤ ua, ∀a ∈ L0. (6)

In other words, the product flow on each link is bounded by the capacity (which is a

strategic decision variable) on the link.

The total operational cost on a link, be it a manufacturing/production link, a ship-

ment/distribution link, or a storage link is assumed, in general, to be a function of the flows

of the product on all the links, that is,

ĉa = ĉa(f), ∀a ∈ L0, (7)

where f is the vector of all the link flows.

In addition, we assume that the total design cost associated with each link is a function

of the design capacity on the link, that is,

π̂a = π̂a(ua), ∀a ∈ L0. (8)

Let Xi denote the vector of strategy variables associated with firm i; i = 1, . . . , I, where

Xi is the vector of path flows associated with firm i, and the vector of link capacities, that

is, Xi ≡ {{{xp}|p ∈ P 0
i }; {{ua}|a ∈ L0

i }} ∈ R
n

P0
i
+n

L0
i

+ . X is then the vector of all the firms’

strategies, that is, X ≡ {{Xi}|i = 1, . . . , I}}.

The profit function Ui of firm i; i = 1, . . . , I, is the difference between the firm’s revenue

and its total costs, that is,

Ui =
nR∑
k=1

ρRk
(d)

∑
p∈P 0

Ri
k

xp −
∑

a∈L0
i

ĉa(f)−
∑

a∈L0
i

π̂a(ua). (9)
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In view of (1) – (9), we may write:

U = U(X), (10)

where U is the I-dimensional vector of the firms’ profits.

We now consider the oligopolistic market mechanism in which the I firms select their

supply chain network link capacities and product path flows in a noncooperative manner,

each one trying to maximize its own profit. We seek to determine a path flow and capacity

pattern X for which the I firms will be in a state of equilibrium as defined below.

Definition 1: Supply Chain Network Design Cournot-Nash Equilibrium

A path flow and design capacity pattern X∗ ∈ K0 =
∏I

i=1K0
i is said to constitute a supply

chain network design Cournot-Nash equilibrium if for each firm i; i = 1, . . . , I:

Ui(X
∗
i , X̂∗

i ) ≥ Ui(Xi, X̂
∗
i ), ∀Xi ∈ K0

i , (11)

where X̂∗
i ≡ (X∗

1 , . . . , X
∗
i−1, X

∗
i+1, . . . , X

∗
I ) and K0

i ≡ {Xi|Xi ∈ R
n

P0
i
+n

L0
i

+ , and (6) is satisfied}.

Note that, according to (11), a supply chain network design Cournot-Nash equilibrium

has been established if no firm can increase its profits unilaterally.

The variational inequality formulation of the Cournot-Nash (Cournot (1838), Nash (1950,

1951)) supply chain network design problem satisfying Definition 1 is given in the following

theorem.

Theorem 1

Assume that for each firm i; i = 1, . . . , I, the profit function Ui(X) is concave with respect

to the variables in Xi, and is continuously differentiable. Then X∗ ∈ K0 is a supply chain

network design Cournot-Nash equilibrium according to Definition 1 if and only if it satisfies

the variational inequality:

−
I∑

i=1

〈∇Xi
Ui(X

∗)T , Xi −X∗
i 〉 ≥ 0, ∀X ∈ K0, (12)

where 〈·, ·〉 denotes the inner product in the corresponding Euclidean space and ∇Xi
Ui(X)

denotes the gradient of Ui(X) with respect to Xi. The solution of variational inequality (12)
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is equivalent to the solution of variational inequality: determine (x∗, u∗, λ∗) ∈ K1 satisfying:

I∑
i=1

nR∑
k=1

∑
p∈P 0

Ri
k

∂Ĉp(x
∗)

∂xp

+
∑

a∈L0

λ∗aδap − ρRk
(x∗)−

nR∑
l=1

∂ρRl
(x∗)

∂dRk

∑
p∈P 0

Ri
k

x∗p

× [xp − x∗p]

+
∑

a∈L0

[
∂π̂a(u

∗
a)

∂ua

− λ∗a

]
× [ua − u∗a]

+
∑

a∈L0

u∗a −
∑

p∈P 0

x∗pδap

× [λa − λ∗a] ≥ 0, ∀(x, u, λ) ∈ K1, (13)

where K1 ≡ {(x, u, λ)|x ∈ R
nP0

+ ; u ∈ R
nL0

+ ; λ ∈ R
nL0

+ } and ∂Ĉp(x)
∂xp

≡ ∑
b∈L0

i

∑
a∈L0

i

∂ĉb(f)
∂fa

δap for

paths p ∈ P 0
i ; i = 1, . . . , I.

Proof: Variational inequality (12) follows directly from Gabay and Moulin (1980); see also

Dafermos and Nagurney (1987). Here we have also utilized the fact that the demand price

functions (2) can be reexpressed in light of (1) directly as a function of path flows as can

the total operational cost functions (7). Variational inequality (13) follows, in turn, from

Bertsekas and Tsitsiklis (1989) with notice that λ∗ corresponds to the vector of optimal

Lagrange multipliers associated with constraints (6).

Variational inequality (13) can be put into standard form as below: determine X∗ ∈ K
such that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (14)

where K is closed and convex and F (X) is a continuous function from K to Rn. Indeed,

we can define K ≡ K1 and let F (X) be the vector with nP 0 + 2nL0 components given by

the specific terms preceding the first multiplication sign in (13), the second in (13), and the

third in (13).

It is interesting to relate this supply chain network design oligopoly model to the spatial

oligopoly model proposed by Dafermos and Nagurney (1987), which is done in the following

corollary.
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Corollary 1

Assume that there are I firms in the supply chain network design oligopoly model and that

each firm is considering a single manufacturing plant and a single distribution center. As-

sume also that the distribution costs from each manufacturing plant to the distribution center

and the storage costs are all equal to zero. Then the resulting model is a generalization of

the spatial oligopoly model of Dafermos and Nagurney (1987) with the inclusion of design

capacities as strategic variables and whose underlying initial network structure is given in

Figure 2.

Proof: Follows from Dafermos and Nagurney (1987) and Nagurney (1993).

Hence, the above supply chain network design oligopoly model, as a spcial case, provides

us with an extension to the spatial oligopoly model of Dafermos and Nagurney (1987). It

is also interesting to note that in the new supply chain network design oligopoly model

there is competition on the supply and distribution sides as well as on the demand side,

since the cost functions associated with production, with distribution, and with storage

may, in general, depend upon not only the flows of the particular firm but, rather, on

the flows of all the firms. In Dafermos and Nagurney (1987) and in Nagurney (1993) the

network structure of the spatial oligopoly problem is depicted as a bipartite graph with

the manufacturing assumed to take place at the manufacturing/production nodes. In the

supply chain network design formalism here, we associate the production with links, and

the outputs are, hence, the link flows, and, thus, Figure 2 makes this explicit. Dafermos

and Nagurney (1987) also establish the relationships between spatial Cournot oligopolies

and perfectly competitive spatial price equilibrium problems (cf. Dafermos and Nagurney

(1987)). Nagurney, Dupuis, and Zhang (1994), in turn, developed a dynamic version of

the model of Dafermos and Nagurney (1987) using projected dynamical systems theory (see

also Nagurney and Zhang (1996b)). Of course, those models, unlike the ones proposed in

this paper, did not have the capacity design variables in their formulations. Our framework

allows for such a generalization and, as we will see in the following sections, without much

additional cost in terms of computations and problem solution.

It is also interesting to relate the supply chain network oligopoly model to the classi-
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Figure 2: The Initial Network Topology of the Spatial Oligopoly Design Problem

cal Cournot (1838) oligopoly model in quantity variables, which has been formulated as a

variational inequality problem by Gabay and Moulin (1980) and has been studied by both

economists and operations researchers (cf. Murphy, Sherali, and Soyster (1982), Flam and

Ben-Israel (1990), Nagurney (1993), and the references therein). Indeed, we have the follow-

ing corollary, the proof of which is immediate.

Corollary 2

Assume that there is a single manufacturing plant associated with each firm in the above

supply chain network design model and a single distribution center. Assume also that there

is a single demand market. Assume that the manufacturing cost of each firm depends only

upon its own output. Then, if the storage and distribution cost functions are all identically

equal to zero the above design model collapses to an extension of the classical oligopoly model

in quantity variables and with capacity design variables. Furthermore, if I = 2, one then

obtains a generalization of the classical duopoly model.

The initial network structure for the classical oligopoly problem (see also Nagurney (1993,

2009a)) is depicted in Figure 3. The classical model is an aspatial model since there are no

explicit transportation/transaction costs between the firms/manufacturers and the demand

12
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market.

Existence results for both spatial and aspatial oligopoly problems can be found in Nagur-

ney and Zhang (1996b) and the references therein. Typically, either strong monotonicity or

coercivity conditions are imposed on the relevant functions in order to guarantee existence

of a Cournot-Nash equilibrium in such applications.

We emphasize that with the variational inequality formulation of the competitive supply

chain network design problem, as given above, we can now:

1. consider problems in which there are nonlinearities as well as asymmetries in the under-

lying functions, for which an optimization formulation would no longer suffice and

2. obtain further insights into competitive oligopolistic equilibrium problems that character-

ize a variety of industries with the generalization of the inclusion of explicit design variables.

Moreover, as is well-known, intuition in the case of equilibrium problems, as opposed

to optimization problems, may be easily confounded (as in the Braess paradox; see Braess

(1968) and Braess, Nagurney, and Wakolbinger (2005)). Hence, an oligopolistic supply chain
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network design framework, which allows for the computation of solutions, can allow firms to

investigate their optimal strategies in the presence of competition.

3. The Algorithm

In this Section, we recall the Euler method, which is induced by the general iterative

scheme of Dupuis and Nagurney (1993). Its realization for the solution of supply chain

network design problems governed by variational inequality (13) yields subproblems that

can be solved explicitly and in closed form.

Specifically, recall that at an iteration τ of the Euler method (see also Nagurney and

Zhang (1996b)) one computes:

Xτ+1 = PK(Xτ − aτF (Xτ )), (15)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem: determine X∗ ∈ K such that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (16)

where 〈·, ·〉 is the inner product in n-dimensional Euclidean space, X ∈ Rn, and F (X) is an

n-dimensional function from K to Rn, with F (X) being continuous (see also (14)).

As shown in Dupuis and Nagurney (1993); see also Nagurney and Zhang (1996b), for

convergence of the general iterative scheme, which induces the Euler method, among other

methods, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞.

Specific conditions for convergence of this scheme can be found for a variety of network-

based problems, similar to those constructed here, in Nagurney and Zhang (1996b) and the

references therein.

Explicit Formulae for the Euler Method Applied to the Supply Chain Network

Design Variational Inequality (13)

The elegance of this procedure for the computation of solutions to the supply chain network

design problem modeled in Section 2 can be seen in the following explicit formulae. Indeed,

(15) for the supply chain design network oligopoly problem governed by variational inequality
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problem (13) yields the following closed form expressions for the product path flows, the

design capacities, and the Lagrange multipliers, respectively:

xτ+1
p = max{0, xτ

p+aτ (ρRk
(xτ )−

nR∑
l=1

∂ρl(x
τ )

∂dRk

∑
p∈P 0

Ri
k

xτ
p−

∂Ĉp(x
τ )

∂xp

−
∑

a∈L0

λτ
aδap)}, ∀i,∀k,∀p ∈ P 0

Ri
k
;

(17)

uτ+1
a = max{0, uτ

a + aτ (λ
τ
a −

∂π̂a(u
τ
a)

∂ua

)}, ∀a ∈ L0; (18)

λτ+1
a = max{0, λτ

a + aτ (
∑

p∈P 0

xτ
pδap − uτ

a)}, ∀a ∈ L0. (19)

In the next Section, we solve supply chain network oligopoly design problems using this

algorithmic scheme.

4. Numerical Examples

In this Section, we present numerical supply chain network design oligopoly examples of

increasing complexity. We implemented the Euler method, as discussed in Section 3. The

algorithm code were implemented in FORTRAN and the system used for the computations

was a Unix system at the University of Massachusetts Amherst. The convergence tolerance

was: |Xτ+1 − Xτ | ≤ 10−6 for all the examples. The sequence {aτ} used (cf. (15)) was:

.1{1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . . , }. We initialized the Euler method as follows. We set the demand for

the product at 100 for each demand market and equally distributed the demand among all

the paths. The initial link design capacities as well as the initial Lagrange multipliers were

all set to zero.

Example 1

Example 1 consisted of four firms with the prospective supply chain network topology as

in Figure 4. Each firm was considering a single manufacturing plant, a single distribution

center, and a single demand market.

For simplicity, we let all the total operational cost functions on the links be equal and

given by:

ĉa(f) = 2f 2
a + fa, ∀a ∈ L0

i ; i = 1, 2, 3, 4. (20)
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Figure 4: The Initial Network Topology for Examples 1 and 2

The total design cost functions on all the links were:

π̂a(ua) = 5u2
a + ua, ∀a ∈ L0

i ; i = 1, 2, 3, 4. (21)

The demand price function at the single demand market was:

ρR1(d) = −dR1 + 200. (22)

We denoted the paths by p1, p2, p3, and p4 corresponding to firm 1 through firm 4,

respectively, with each path originating in its top-most firm node and ending in the demand

market node (cf. Figure 4).

The Euler method converged to the equilibrium solution:

x∗p1
= x∗p2

= x∗p3
= x∗p4

= 3.15,

16



u∗a = 3.15,∀a ∈ L0, f ∗a = 3.15,∀a ∈ L0,

λ∗a = 32.46,∀a ∈ L0.

Hence, the supply chain network design, since all links had positive capacities (as well as

positive flows), had the topology as in Figure 4.

The demand was 12.60 and the demand market price was ρR1 = 187.40. Each firm earned

a profit of 287.88.

Example 2

Example 2 was constructed from Example 1 and had the same data except that the demand

price at the demand market was greatly reduced to:

ρR1(d) = −dR1 + 5. (23)

The Euler method converged to the solution with all path flows, link flows, and design

capacities equal to 0.00 with the Lagrange multipliers all equal to 1.05. Hence, not one of

the firms enters into this market and none of these firms produces the product. Therefore,

the final supply chain network design is essentially the null set.

Example 3

Example 3 had the initial supply chain network topology as in Figure 5, where we also define

the links. Specifically, there were two firms considering two manufacturing plants each, two

distribution centers each, and considering serving a single demand market.

The total cost data, along with the computed link flows, capacities, and Lagrange multi-

pliers, are reported in Table 1. This example represents the following scenario. Let the first

firm be located in the US, for example, where there are higher manufacturing costs and also

higher costs associated with both constructing the manufacturing plants and the distribution

centers; see: ĉ1, ĉ5, and π̂1, π̂5. The second firm, on the other hand, is located outside the

US where there are lower manufacturing costs and storage costs as well as associated design

costs for the facilities; see ĉ11, ĉ15, and π̂11, π̂15. However, the demand market is in the US
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Table 1: Total Cost Functions and Solution for Example 3

Link a ĉa(f) π̂a(ua) f ∗a u∗a λ∗a
1 2f 2

1 + 2f1 5u2
1 + u1 7.28 7.28 74.05

2 f 2
2 + 2f2 .5u2

2 + u2 3.98 3.98 4.98
3 2.5f 2

3 + f3 5u2
3 + 2u3 7.54 7.54 76.23

4 f 2
4 + f4 .5u2

4 + u4 7.54 7.54 8.54
5 3f 2

5 + 2f5 6u2
5 + u5 5.73 5.73 70.05

6 .5f 2
6 + f6 .5u2

6 + u6 2.17 2.17 3.17
7 1.5f 2

7 + f7 10u2
7 + u7 5.47 5.47 110.07

8 f 2
8 + f8 .5u2

8 + u8 5.47 5.47 6.48
9 .5f 2

9 + f9 .5u2
9 + u9 3.30 3.30 4.30

10 f 2
10 + f10 .5u2

10 + u10 3.56 3.56 4.56
11 .5f 2

11 + f11 4u2
11 + u11 7.15 7.15 58.23

12 f 2
12 + f12 .5u2

12 + u12 2.98 2.98 3.98
13 .5f 2

13 + f13 2.5u2
13 + u13 7.14 7.14 36.72

14 4f 2
14 + f14 5u2

14 + 5u14 7.14 7.14 76.19
15 f 2

15 + f15 3u2
15 + u15 8.12 8.12 49.76

16 f 2
16 + f16 .5u2

16 + u16 3.96 3.96 4.96
17 .5f 2

17 + f17 2.5u2
17 + u17 8.13 8.13 41.66

18 3.5f 2
18 + f18 4u2

18 + 2u18 8.13 8.13 66.89
19 f 2

19 + f19 .5u2
19 + u19 4.17 4.17 5.17

20 .5f 2
20 + f20 .5u2

20 + u20 4.16 4.16 5.16

and, hence, the second firm faces higher transportation costs to deliver the product to the

demand market, as can be seen from the function data in Table 1; see ĉ14 and ĉ18 versus ĉ4

and ĉ8.

The demand price function was:

ρR1(d) = −dR1 + 300. (24)

For completeness, we also provide the computed equilibrium path flows. There were four

paths for each firm and we label the paths as follows (please refer to Figure 5): for firm 1:

p1 = (1, 2, 3, 4), p2 = (1, 9, 7, 8), p3 = (5, 6, 7, 8), p4 = (5, 10, 3, 4),
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for firm 2:

p5 = (11, 12, 13, 14), p6 = (11, 19, 17, 18), p7 = (15, 16, 17, 18), p8 = (15, 20, 13, 14).

The computed equilibrium path flow pattern was:

x∗p1
= 3.98, x∗p2

= 3.30, x∗p3
= 2.17, x∗p4

= 3.56,

x∗p5
= 2.98, x∗p6

= 4.17, x∗p7
= 3.96, x∗p8

= 4.16.

Example 4

Example 4 also had the initial supply chain network topology as in Figure 5. Example 4 had

the same data as Example 3 except we reduced the capacity design costs associated with the

shipment links from the second firm to the demand market as in Table 2; see π̂14 and π̂18.

The total cost data, along with the computed link flows, capacities, and Lagrange multi-

pliers, are reported in Table 2.

The demand price was: 267.47 and the total profit earned by both firms was: 4,493.29.

For completeness, we also provide the computed equilibrium path flows, which were:

x∗p1
= 3.92, x∗p2

= 3.25, x∗p3
= 2.13, x∗p4

= 3.51,

x∗p5
= 4.04, x∗p6

= 5.19, x∗p7
= 4.89, x∗p8

= 5.60.

One can see that the second firm manufactured a greater volume of the product than

the first firm and provided more of the product to the consumers at the demand market.

Hence, in this example the firm that had lower overseas costs was more competitive once the

shipment costs were further reduced.

Note that the final supply chain network topology under the optimal design for Example

4 remained as in Figure 5.
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Table 2: Total Cost Functions and Solution for Example 4

Link a ĉa(f) π̂a(ua) f ∗a u∗a λ∗a
1 2f 2

1 + 2f1 5u2
1 + u1 7.17 7.17 72.87

2 f 2
2 + 2f2 .5u2

2 + u2 3.92 3.92 4.92
3 2.5f 2

3 + f3 5u2
3 + 2u3 7.42 7.42 75.01

4 f 2
4 + f4 .5u2

4 + u4 7.42 7.42 8.42
5 3f 2

5 + 2f5 6u2
5 + u5 5.64 5.64 68.93

6 .5f 2
6 + f6 .5u2

6 + u6 2.13 2.13 3.14
7 1.5f 2

7 + f7 10u2
7 + u7 5.39 5.39 108.30

8 f 2
8 + f8 .5u2

8 + u8 5.39 5.39 6.39
9 .5f 2

9 + f9 .5u2
9 + u9 3.25 3.25 4.25

10 f 2
10 + f10 .5u2

10 + u10 3.51 3.51 4.50
11 .5f 2

11 + f11 4u2
11 + u11 9.23 9.23 74.74

12 f 2
12 + f12 .5u2

12 + u12 4.04 4.04 5.04
13 .5f 2

13 + f13 2.5u2
13 + u13 9.64 9.64 49.24

14 4f 2
14 + f14 .5u2

14 + u14 9.64 9.64 10.64
15 f 2

15 + f15 3u2
15 + u15 10.49 10.49 63.90

16 f 2
16 + f16 .5u2

16 + u16 4.89 4.89 5.89
17 .5f 2

17 + f17 2.5u2
17 + u17 10.08 10.08 51.44

18 3.5f 2
18 + f18 .5u2

18 + u18 10.08 10.08 11.08
19 f 2

19 + f19 .5u2
19 + u19 5.19 5.19 6.19

20 .5f 2
20 + f20 .5u2

20 + u20 5.60 5.60 6.60
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Example 5

Example 5 had the same data as Example 4 but now we added a second demand market

with the initial supply chain network topology being as depicted in Figure 6. The links are

labeled on that figure. We assumed that the second demand market was located in the US

with the shipment costs set to reflect this scenario. The demand price function for the first

demand market remained as in Examples 3 and 4. The demand price function for the new

demand market was:

ρR2(d) = −2dR2 + 500. (25)

The remainder of the input data and the computed solution are given in Table 3.

For completeness, we also provide the computed path flows. We retained the numbering

and the definitions of the first eight paths for the first demand market as in Examples 3 and

4 (but associated now with Figure 6). The new paths for the first firm to the second demand

market are defined as:

p9 = (1, 2, 3, 21), p10 = (1, 9, 7, 22), p11 = (5, 6, 7, 22), p12 = (5, 10, 3, 21),

and for the second firm to the second demand market as:

p13 = (11, 12, 13, 23), p14 = (11, 19, 17, 24), p15 = (15, 16, 17, 24), p16 = (15, 20, 13, 23).

The computed path flow solution follows:

x∗p1
= 0.00, x∗p2

= 0.00, x∗p3
= 0.00, x∗p4

= 0.00,

x∗p5
= 0.49, x∗p6

= 0.72, x∗p7
= 0.79, x∗p8

= 1.84.

x∗p9
= 5.75, x∗p10

= 4.54, x∗p11
= 3.04, x∗p12

= 5.08,

x∗p13
= 6.49, x∗p14

= 8.15, x∗p15
= 7.55, x∗p16

= 7.84.

It is very interesting to note that the first firm no longer provides any of the product to

the first demand market and, in fact, all its associated path flows to the first demand market

are now equal to zero as are the link flows on links 4 and 8. In addition, the associated

design capacities on links 4 and 8 are also equal to zero. Thus, for Example 5, the optimal

supply chain network design is as given in Figure 7.

22



Table 3: Total Cost Functions and Solution for Example 5

Link a ĉa(f) π̂a(ua) f ∗a u∗a λ∗a
1 2f 2

1 + 2f1 5u2
1 + u1 10.29 10.29 104.12

2 f 2
2 + 2f2 .5u2

2 + u2 5.75 5.75 6.75
3 2.5f 2

3 + f3 5u2
3 + 2u3 10.83 10.83 109.09

4 f 2
4 + f4 .5u2

4 + u4 0.00 0.00 0.04
5 3f 2

5 + 2f5 6u2
5 + u5 8.12 8.12 98.65

6 .5f 2
6 + f6 .5u2

6 + u6 3.04 3.04 4.04
7 1.5f 2

7 + f7 10u2
7 + u7 7.58 7.58 151.81

8 f 2
8 + f8 .5u2

8 + u8 0.00 0.00 0.56
9 .5f 2

9 + f9 .5u2
9 + u9 4.54 4.54 5.54

10 f 2
10 + f10 .5u2

10 + u10 5.08 5.08 6.08
11 .5f 2

11 + f11 4u2
11 + u11 15.84 15.84 127.61

12 f 2
12 + f12 .5u2

12 + u12 6.98 6.98 7.98
13 .5f 2

13 + f13 2.5u2
13 + u13 16.66 16.66 84.34

14 4f 2
14 + f14 .5u2

14 + u14 2.33 2.33 3.33
15 f 2

15 + f15 3u2
15 + u15 18.02 18.02 109.00

16 f 2
16 + f16 .5u2

16 + u16 8.34 8.34 9.34
17 .5f 2

17 + f17 2.5u2
17 + u17 17.20 17.20 87.04

18 3.5f 2
18 + f18 .5u2

18 + u18 1.51 1.51 2.51
19 f 2

19 + f19 .5u2
19 + u19 8.86 8.86 9.86

20 .5f 2
20 + f20 .5u2

20 + u20 9.68 9.68 10.68
21 .5f 2

21 + f21 2.5u2
21 + f21 10.83 10.83 23.66

22 f 2
22 + f22 .5u2

22 + f22 7.58 7.58 17.16
23 2f 2

23 + f23 .5u2
23 + f23 14.33 14.33 15.33

24 1.5f 2
24 + f22 .5u2

24 + f24 15.70 15.70 16.69
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Figure 6: The Initial Supply Chain Network Topology for Example 5
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Figure 7: The Optimal Supply Chain Network Design for Example 5
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5. Summary and Conclusions

In this paper, we developed a multimarket supply chain network design model in an

oligopolistic setting. The firms select not only their optimal product flows but also the

capacities associated with the various supply chain activities of production/manufacturing,

storage, and distribution/shipment. We formulated the supply chain network design problem

as a variational inequality problem and then proposed an algorithm, which fully exploits the

underlying structure of these network problems, and yields closed form expressions at each

iterative step.

The network formalism proposed here, which captures competition on the production,

distribution, as well as demand market dimensions, enables the investigation of economic

issues surrounding supply chain network design. In addition, it allows for the identification

(and generalization) of special cases of oligopolistic market equilibrium problems, spatial,

as well as aspatial, through the underlying network structure, that have appeared in the

literature. Furthermore, the network structure allows one to visualize graphically the pro-

posed supply chain network topology and the final optimal/equilibrium design. Importantly,

this paper illustrates the power of computational methodologies to explore issues regarding

competing firms and network design. Moreover, we demonstrate that such problems can be

formulated and solved without using discrete variables but, rather only continuous variables.

The research in this paper can be extended in several directions. One can construct

multiproduct versions of the oligopolistic supply chain network design model developed here,

and one can also consider more explicitly international/global issues with the incorporation

of exchange rates and risk. It would also be worthwhile to formulate supply chain network

redesign oligopolistic models. Obviously, further computational experimentation as well as

theoretical developments and empirical applications would also be of value, but we leave

such research questions/problems for the future.
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