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Cooperative Systems

@

* Decision Makers (DMs) are self-interested

* Individual rewards depends on collective actions

* Collective behavior depends on individual actions



Cooperative Systems: Natural and Virtual
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* Optimize a global objective through selfish DMs

* Design Problem:
— Utility Design ( tell DMs what to optimize )

— Negotiation Mechanism Design ( tell DMs how to optimize )



Overview
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Setup for Target Assignment Problem

‘/)

max Global Utility ( assignment )



Global Utility

No engagement here Independent engagements
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Global Utility = Z Utility generated at target |
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l (for example)

E [ total value of ( destroyed target — vehicles lost ) ]



Joint Optimization

Global Utility { Assignment Profile :

N (.- a,)

max U,(a)

Can be formulated as an integer programming problem

- Computationally hard

- Relaxation techniques available for suboptimal solutions
Decentralized implementation

- Requires global information

- Agreement issues can arise



Game Theory Formulation

Vehicles are self-interested players with private utilities
U, (a)

A vehicle need not know other vehicles’ utilities.
Individual utilities depend on local information only.

Vehicles negotiate an agreeable assignment.



Autonomous Target Assignment Problem

Design
- Vehicle utilities U, (a)
- Negotiation mechanisms
so that
vehicles agree on an assignment with high Global Utility
using
- low computational power

- low inter-vehicle communication
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Agreeable Assignment - Nash Equilibrium

An assignment is a ( pure ) Nash equilibrium
if no player has an incentive to unilaterally deviate from it.

1 2 3 1 2 3

Example : R 1121 10,0 |0,0
210,0 (1,2 |0,0

A A 3{0,0 (0,0 |3,3

Pure Nash equilibria : (1,1), (2,2), (3,3)

Mixed Nash equilibria : ([ .54 .27 .18],[.27 .54 .18])



Utility Design

* Vehicle utilities should be aligned with Global Utility

* |deal alignment :
— Only globally optimal assignments should be agreeable

— Not possible without computing globally optimal assignments

* Relaxed alignment ( factoredness in Wolpert et al. 2000 ) :

U, (@ B es ) > U, (B 80 2,)
<

Uy @y By 8,) > Uy (88108

— Globally optimum assignment is always agreeable (pure Nash) ,



Aligned Utilities - Team Play

* Foreveryvehice, U, (a)=U,(a)

* Example:
1 2 1 2
12,2[0,0
210,0(1,1
A A \

Suboptimal Nash

* Not localized

- Each vehicle needs global information
- Low Signal-to-Noise-Ratio (Wolpert et al. 2000)
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Aligned Utilities - Wonderful Life Utility
(Wolpert et al. 2000)

* Marginal contribution of vehicle # i to Global Utility, i.e.,

Ui(a)=U,(@)-U,(a:a ="0")

~

no engagement

* Localized:
- Equal marginal contribution to engagements within range

- Signal-to-Noise-Ratio is maximized



Aligned Utilities - Wonderful Life Utility
(Wolpert et al. 2000)

* Aligned:
Ui, & ,) — Ui, a0, )
Ug(ay @0 8,) = Ug(ay, a0 a,)

* Leads to a Potential Game with potential U (a)

* Convergent negotiation mechanisms for potential games



A Misaligned Utility Structure

Equally Shared Utilities :

utility generated by engagement with a.
number of participating vehicles

Ui(a):
Hence

U, (@) =>U;(a)

Global optimum may not be Nash agreeable

A pure Nash agreeable assignment may not exists at all !



Negotiation Mechanisms

* At step k, vehicle # i proposes a target
a; (K)
based on the past proposal profiles

ad,...,a(k -1

* |s there a reasonable negotiation mechanism
that leads to a Nash equilibrium ?

* Adopt learning methods in repeated games
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Spatial Adaptive Play

* At each negotiation step, only one randomly chosen
vehicle updates its proposal

* Updating vehicle proposes d; at step k with probability
a; .- ) _
p (k) =P &(k)=4a

which maximizes

p, (k) =arg max a_[fp_ Ui(a,a;(k-1)) J:FTH(pi)

Pi



Spatial Adaptive Play

o P;(K) is given by Gibbs distribution

pUi (a2 (k-1))/z

Zeu (a8, (K1)t

* For potential games, SAP induces a Markov Chain with
U . ()7

Zeug(a

pi (k) =

IlmPa




Spatial Adaptive Play

* As 74 0O ,wehave

u ()7

zeug(a)/

* Therefore,

>1 for acargmaxU (a)

Ii?g P a(w) eargmaxU (a) =1



of utility to different strategies
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Near Optimum Performance

* Example:

40 uniform weapons negotiate 40 non-uniform targets

convergence of negotiations through FP with utility measurements
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Near Optimum Performance

* Example:

200 uniform weapons negotiate 200 non-uniform targets
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Greedy sequential implementation
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Recap and Future Work

Cooperative systems design 'W‘ Q2
— Agent utility design ‘@
D

—Negotiation mechanism design

D

Multiagent systems ripe for cross disciplinary
efforts

—Mission Planning with Autonomous Vehicles
—Sensor Networks

—Decentralized Inventory Control for Supply
Chain Management
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Design with Look-ahead ...

( ongoing work )



Optimization
in Dynamic & Stochastic Environments

* Repeated decisions to optimize a long-term global utility

J, :Eiatug(a(t),x(t))

* State x (t) changes stochastically as a functionofa(t)

* State x (t) observed ( partially ) before choosinga(t),

—> optimize over CL strategies a(t) — U (X(t))



THANK YOU !



