Evolution of State-Dependent Risk Preferences in Social-Modeling Games

Patrick Roos, Ryan Carr, and Dana Nau

Department of Computer Science, Institute for Systems Research, and Laboratory for Computational Cultural Dynamics

Preface

- My research field is Artificial Intelligence
- Interdisciplinary research has interested me for a long time
 - > I've worked with researchers in at least 8 different academic disciplines
 - ➤ Business, Computer Science, Electrical Engr., Industrial Engr., Mathematics, Mechanical Engr., Medicine, Political Science
- People in different fields can have very different notions of
 - what questions are important
 - what simplifying assumptions are appropriate
 - > what answers are reasonable
 - how to describe what they've done
- This can make it hard to communicate intelligibly
 - ➤ If what I say doesn't make sense to you, please stop me and I'll try to clarify it

Introduction

- Joint work with two talented PhD students:
 - > Patrick Roos
 - > Ryan Carr
- Analyses and simulations using several evolutionary-game models
- Objective
 - Explore some hypotheses about biological and cultural evolution of human risk preferences
 - > Explore effects of risk-taking on social cooperation

Motivating Example

- Suppose you had to choose between two lotteries
 - > Lottery A:
 - you're guaranteed to get \$4,900
 - ➤ Lottery B:
 - 50% chance that you'll get \$10,000
 - 50% chance that you'll get nothing
- Which lottery would you choose?

Decision Making Under Risk

- A well-known decision-theoretic criterion
 - ➤ Maximize the expected value of the outcome
- From this point of view, Lottery B looks better
 - \rightarrow Its expected value is $\frac{1}{2}(\$10,000) + \frac{1}{2}(\$0) = \$5000$
 - ➤ Lottery A's expected value is only \$4900
- But Lottery B also has a higher risk, and people often are *risk-averse*
 - ➤ Choose an option whose expected value is lower, if it avoids the possibility of an undesirable outcome

Decision Making Under Risk

- There also are situations where people seek risk
 - Choose a risky option if it offers the possibility of escaping from a bad situation
- Example from American football
 - ➤ Hail Mary pass: a very long forward pass with only a small chance of success, made in desperation when the clock is running out

Human Risk Behavior

- Subject of much empirical and theoretical study
- Evidence that human risk preferences are *state-dependent*
 - ➤ Like your current situation => risk-averse
 - ➤ Dislike your current situation enough => risk-seeking
- Several models of this
 - > e.g., Prospect Theory, Security-Potential/Aspiration (SP/A) theory

Objectives and Approach

Questions we wanted to explore

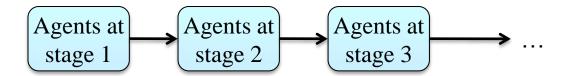
- How might state-dependent risk behavior have come about?
 - > Several recent papers speculate about relation to evolutionary factors
 - Houston, McNamara, & Steer. Do we expect natural selection to produce rational behaviour? *Philosophical Transactions of the Royal Society B* 362 (2007) 1531–1543
 - J. R. Stevens. Rational decision making in primates: the bounded and the ecological. *In* Platt and Ghazanfar (eds.), *Primate Neuroethology*. Oxford University Press, 20110 (pp. 98-116)
- How might it relate to cultural evolution?
 - ➤ Boyd & Richerson. *Culture and the evolutionary process*. University of Chicago Press, 1988.

Approach

 Analyses and simulations using evolutionary-game models intended to reflect both biological and cultural evolution

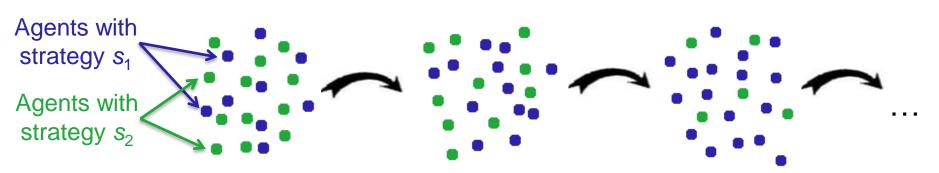
Evolutionary Simulations

- *Evolutionary simulation*: a repeated stochastic game whose structure is intended to model certain aspects of evolutionary environments
 - > Consists of a number of *stages* or *generations*
- In each stage, there is a set of k agents (k is the *total population size*)
 - ➤ The agents interact in some kind of game-theoretic scenario
 - Different agents have different strategies (ways of choosing actions)
 - ➤ Each agent gets a numeric *payoff* that's a stochastic function of the *strategy profile* (the strategies of all the agents)
- The payoffs are used in deciding what the set of agents will be at the next stage



Evolutionary Simulations

- Consider the set of all agents that use strategy s
 - > In a biological setting, s may represent a type of animal
 - > In a cultural setting, s may represent a learned behavior
- Over time, the number of agents using s may grow or shrink depending on how well s performs
 - ➤ How this happens depends on the *reproduction dynamic* (next slide)
- At the end of the simulation, s's reproductive success
 - = proportion of agents that use s = (number of agents that use s)/k, where k = total population size

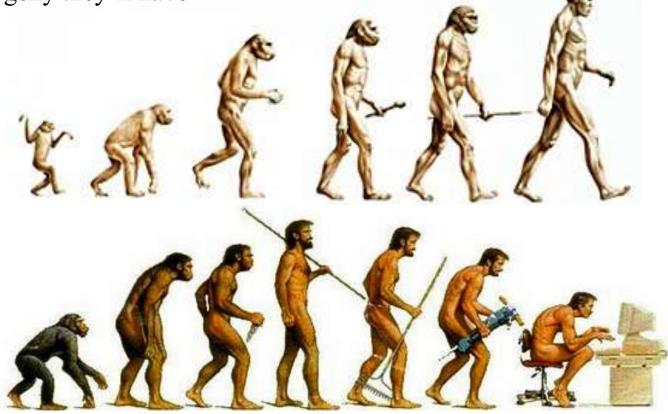


 A_1 = {agents at stage 1}

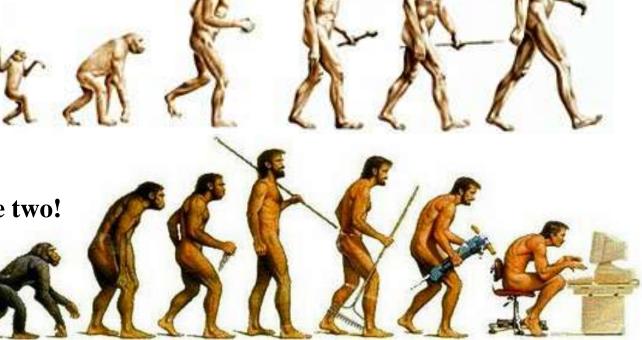
 $A_2 = \{agents at stage 2\}$

 A_3 = {agents at stage 3}

- The *reproduction dynamic* is the mechanism for deciding
 - which strategies will disappear
 - > which strategies will reproduce
 - how many progeny they'll have
- Many different possible reproduction dynamics
 - I'll briefly discuss two of them
- Later I'll generalize to others



- The *reproduction dynamic* is the mechanism for deciding
 - which strategies will disappear
 - which strategies will reproduce
 - how many progeny they'll have
- Many different possible reproduction dynamics
 - I'll briefly discuss two of them
 - No, not these two!
- Later I'll generalize to others



Replicator dynamic:

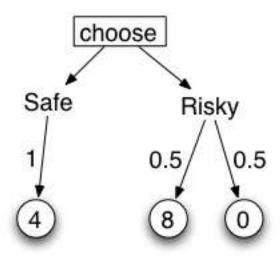
- A strategy's numbers grow or shrink proportionately to how much better or worse it does than the average
 - > At stage *i*, let
 - *p* = proportion of agents that use strategy *s*
 - r = average payoff for those agents
 - R = average payoff for all agents
 - At stage i+1, the proportion of agents that use s will be p(r/R)
- Does well at reflecting growth of animal populations (where strategy ⇔ type of animal)
- Less clear whether or not it's the best model of economic or cultural behavior
 - ➤ Thomas Riechmann. Genetic algorithm learning and evolutionary games. Journal of Economic Dynamics & Control 25 (2001), 1019–1037

Imitate-the-better dynamic:

- At stage i, let $A_i = \{ \text{all agents at stage } i \}$
- To build A_{i+1} , do the following steps k times:
 - \triangleright Randomly choose 2 agents in A_i
 - Let a be the one that got the higher payoff (or choose a at random if both got the same payoff)
 - \triangleright Add to A_{i+1} an agent that uses a's strategy
- A strategy's numbers grow if it does better than average
 - > But the growth rate is different than with the replicator dynamic
- Evidence that this does well at modeling how behaviors spread when people copy the behavior of others
 - ➤ Offerman & Schotter. Imitation and luck: An experimental study on social sampling. *Games and Economic Behavior* **65**:2 (2009), 461–502

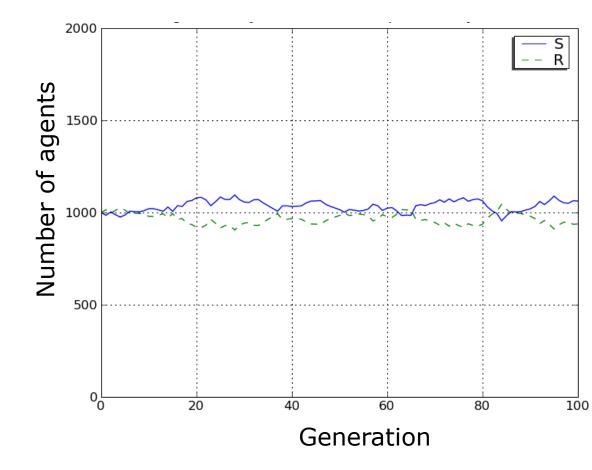
A Simple Lottery Game

- A repeated lottery game
- At each stage, agents make choices between two lotteries
 - > The *safe* lottery: guaranteed reward of 4
 - > The *risky* lottery: $P(0) = \frac{1}{2}$; $P(8) = \frac{1}{2}$
- Two pure (deterministic) strategies:
 - > S: always choose the safe lottery
 - > R: always choose the risky lottery



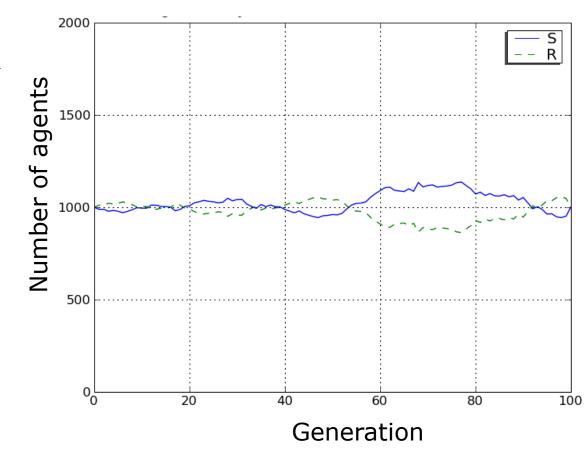
Lottery Game, Replicator Dynamic

- At each stage, each strategy's average payoff is 4
 - ➤ Thus on average, each strategy's population size should stay roughly constant
- Verified by simulation for S and R
- We would have gotten similar results for any strategy that's a mixture of S and R



Lottery Game, Imitate-the-Better Dynamic

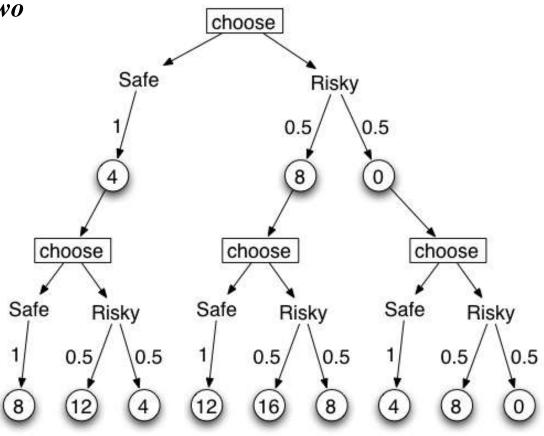
- Pick any two agents, and let s and t be their strategies
- Regardless of what s and t are, each agent has equal probability of getting a higher payoff than the other
 - ➤ Again, each strategy's population size should stay roughly constant
- Verified by simulation for S and R
- Again, we would have gotten similar results for any mixture of S and R



Double Lottery Game

 At each stage, agents make two rounds of lottery choices

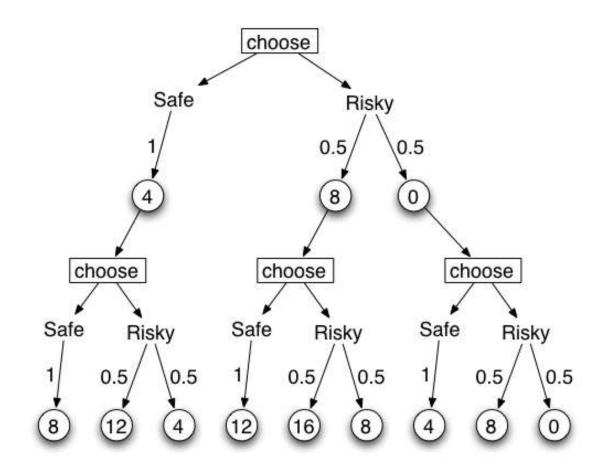
- 1. Choose between the safe lottery and the risky lottery, get a payoff
- 2. Choose between the safe lottery and the risky lottery again, and get an additional payoff



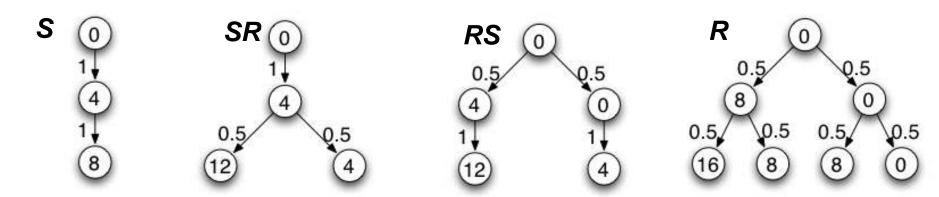
Double Lottery Game

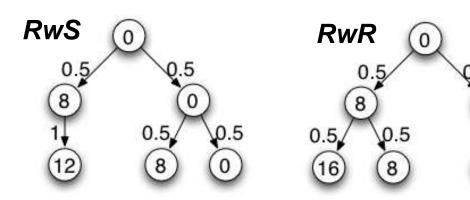
There are 6 pure strategies:

- S: choose Safe both times
- SR: 1st time choose Safe
 2nd time choose Risky
- RS: 1st time Risky
 2nd time Safe
- *R*: Risky both times
- *RwS*: 1st time Risky
 - ➤ 2nd time: if 1st time was a win (payoff 8), then Safe, otherwise Risky
- *RwR*: 1st time Risky
 - > 2nd time: if 1st time was a win (payoff 8), then Risky, otherwise Safe



Distribution of Payoffs for Each Strategy



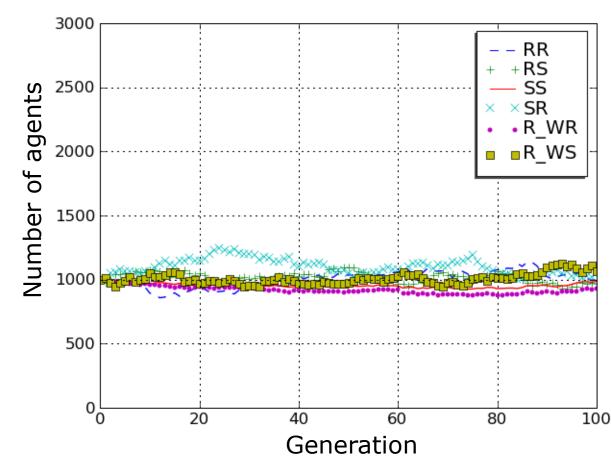


- For every strategy, the expected value is 8
- But the distribution of payoffs differs

	S	S	R	R	2S		R			RwS			RwR	
Payoff	8	12	4	12	4	16	8	0	12	8	0	16	8	4
Probability	1	1/2	1/2	1/2	1/2	1/4	1/2	1/4	1/2	1/4	1/4	1/4	1/4	1/2

Double Lottery Game, Replicator Dynamic

- At each stage, each strategy's expected payoff is 8
 - ➤ Thus on average, each strategy's population size should stay roughly constant
- Verified by simulation for all 6 strategies



Double Lottery Game, Imitate-the-Better Dynamic

- For imitate-the-better, do the following *k* times:
 - \triangleright Choose two agents a and b, and compare their payofs
 - Reproduce the one that got a higher payoff
 - If they got the same payoff, choose either of them at random
- Suppose *a* uses *S* and *b* uses *SR*
 - $P(b \text{ gets } 4) = \frac{1}{2} = a \text{ reproduces}$
 - $P(b \text{ gets } 12) = \frac{1}{2} \implies b \text{ reproduces}$
- Thus a and b are equally likely to reproduce

	a		O											
	(S)	S	(R)	R	2S		R			RwS			RwR	
Payoff	8	12	4	12	4	16	8	0	12	8	0	16	8	4
Probability	1	1/2	1/2	1/2	1/2	1/4	1/2	1/4	1/2	1/4	1/4	1/4	1/4	1/2

Double Lottery Game, Imitate-the-Better Dynamic

- Suppose a uses S and b uses RwS
 - \triangleright $P(b \text{ gets } 0) = \frac{1}{4} => a \text{ reproduces}$
 - $ightharpoonup P(b \text{ gets } 8) = \frac{1}{4} => a \text{ and } b \text{ equally likely to reproduce}$
 - $ightharpoonup P(b \text{ gets } 12) = \frac{1}{2} => b \text{ reproduces}$
- Thus
 - $P(a \text{ reproduces}) = \frac{1}{4} + \frac{1}{2}(\frac{1}{4}) = 0.375$
 - $P(b \text{ reproduces}) = \frac{1}{2} + \frac{1}{2} (\frac{1}{4}) = 0.625$
- RwS dominates S

	a					b								
	S SR RS				R RwS				RwR					
Payoff	8	12	4	12	4	16	8	0	12	8	0	16	8	4
Probability	1	1/2	1/2	1/2	1/2	1/4	1/2	1/4	1/2	1/4	1/4	1/4	1/4	1/2

Double Lottery Game, Imitate-the-Better Dynamic

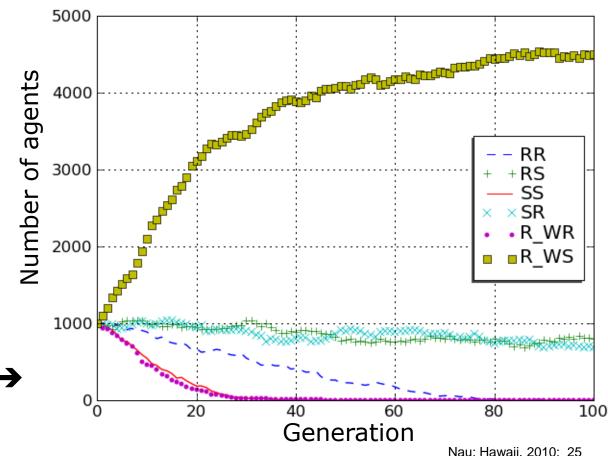
• In general:

- \triangleright RwS dominates S, R, and RwR
 - In a pair where one of the agents uses one of those strategies and the other uses *RwS*, the *RwS* agent is more likely to reproduce
- > For all other pairs of strategies, neither dominates the other
 - Both are equally likely to reproduce

		Dominated by RwS												
	(S)	S	\overline{R}	R	2S		(R)			RwS		*	RwR	
Payoff	8	12	4	12	4	16	8	0	12	8	0	16	8	4
Probability	1	1/2	1/2	1/2	1/2	1/4	1/2	1/4	1/2	1/4	1/4	1/4	1/4	1/2

Double Lottery Game, Imitate-the-Better Dynamic

- Start with equal numbers of all 6 strategies
- RwS has an advantage whenever it's paired with S, R, or RwR
 - > RwS should increase until S, R, and RwR become extinct
- For all other pairs of strategies, neither has an advantage
 - \triangleright Once S, R, and RwR are extinct, the population should stabilize
- Verified by simulation \rightarrow



Nau: Hawaii, 2010: 25

Discussion

- Lots of different possible reproduction dynamics
- The replicator dynamic and the imitate-the-better dynamic are thought to be good models of biological and cultural evolution, respectively
 - ➤ But we're not sure that either of them is a 100% accurate model, so let's look at other reproduction dynamics
- Hypothesis:
 - For *any* reproduction dynamic other than the replicator dynamic, a strategy other than utility maximization is likely to do best
- To test this hypothesis, we need to examine
 - Other reproduction dynamics
 - > Games in which the safe and risky lotteries have different expected payoffs
- That's what I'll discuss next ...

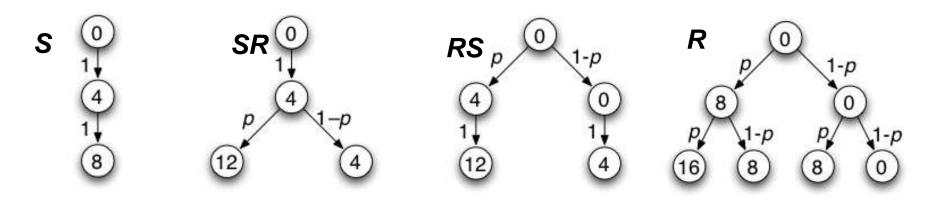
1. Other Reproduction Dynamics

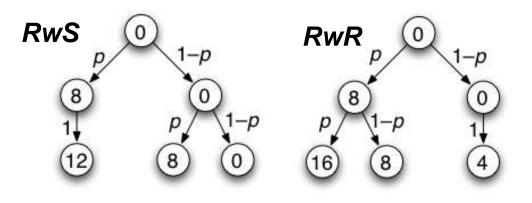
• *Imitation dynamics* are a parameterized class of reproduction dynamics with a parameter $0 \le \alpha \le 1$

[Hofbauer & Sigmund. Evolutionary game dynamics. *Bulletin of the American Mathematical Society* **40** (2003), 479–519]

- \triangleright Case $\alpha = 0$: imitate-the-better
- \triangleright Case $\alpha = 1$: replicator dynamic
- \triangleright Case $0 < \alpha < 1$: in between
- **Theorem:** For $0 < \alpha < 1$, *RwS* is evolutionarily stable.
- In a population that includes any mixture of *RwS* and the other strategies, *RwS* will go to 100% and the others will go extinct

2. Other Expected Payoffs



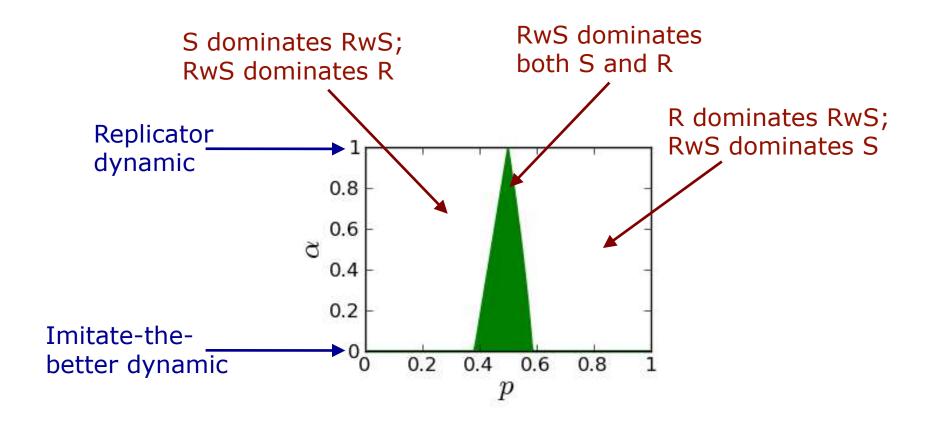


- For the risky lottery, let P(8) = p and P(0) = 1-p
 - > Expected value is 8p
- Safe lottery's payoff is still 4

	S	S	SR	R	2S		R			RwS	7		RwR	
Payoff	8	12	4	12	4	16	8	0	12	8	0	16	8	4
Prob.	1	p	1– <i>p</i>	p	1– <i>p</i>	p^2	2 <i>p</i> (1– <i>p</i>)	$(1-p)^2$	p	<i>p</i> (1– <i>p</i>)	$(1-p)^2$	p^2	p(1-p)	1– <i>p</i>

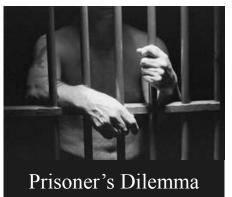
Double Lottery Game

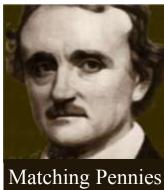
• For all values of p and α , compare RwS to S and R



More Complex Interactions

- In the lottery games, each agent's payoff depended only on its own choices
 - What about situations in which the agents interact?
 - Instead of lotteries, use non-zero-sum games
- We used the Stag Hunt





Stag Hunt

- Simple model of a situation where one must decide whether to work alone or cooperate with others
- Two hunters, each hunting for food
- Hunting for hare: solitary activity
 - > Small payoff (4), but *safe*:
 - Same payoff, regardless of what the other hunter does
- Hunting for stag: cooperative activity
 - > Possibility of a much bigger payoff (8), but *risky*:
 - Payoff = 8 only if the other hunter cooperates
 - ➤ In an evolutionary game setting, P(payoff = 8) depends on the relative proportions of stag hunters and hare hunters at stage i

Stag Hunt

Hunter 2 Hunter I	Stag (risky)	Hare (safe)
Stag (risky)	8,8	0, 4
Hare (safe)	4, 0	4,4

Nash equilibria

Evolutionary Double Stag Hunt

- Instead of two lotteries at each stage, have two Stag Hunt games
 - Randomly divide the agents into pairs,
 - Each pair plays Stag Hunt
 - > Randomly divide the agents into pairs again
 - Each pair plays another Stag Hunt
- 6 pure strategies (by analogy with the double lottery game)
- But initially we'll just be interested in two of them
 - > Stag: hunt stag both times (like the R strategy in the double lottery game)
 - > Hare: hunt hare both times (like the S strategy)
- Consider the case where every agent uses either *Stag* or *Hare*

Stag Hunt

Hunter 2 Hunter I	Stag (risky)	Hare (safe)
Stag (risky)	8, 8	0, 4
Hare (safe)	4, 0	4, 4

Evolutionary Double Stag Hunt

- Let p_i = proportion of *Stag* agents at stage i
- Payoff for *Hare* is 4 + 4 = 8, regardless of the other players' strategies
- Payoff distribution for Stag:
 - > $P(\text{play against } Stag \text{ twice}) = p_i^2$ => payoff = 8 + 8 = 16
 - > $P(\text{play against } Hare \text{ twice}) = (1-p_i)^2$ => payoff = 0
 - > $P(\text{play once against each}) = 2p_i(1-p_i)$ => payoff = 0 + 8 = 8

Stag Hunt

Hunter 2 Hunter I	Stag (risky)	Hare (safe)
Stag (risky)	8, 8	0, 4
Hare (safe)	4, 0	4, 4

Double Stag Hunt

	Hare		Stag	
Payoff	8	16	8	0
Prob.	1	p_i^2	$2p_i(1-p_i)$	$(1-p_i)^2$

- Same formulas as for the double lottery, but with p_i instead of p
 - \triangleright Amount of risk depends on how many agents of each type at stage i
- Examine what happens with replicator and imitate-the-better dynamics

Replicator Dynamic

• Proportion of *Stag* agents at stage i+1 is

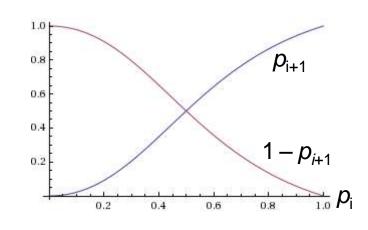
$$> p_{i+1} = p_i s_i / R_i$$

> where

	Hare		Stag	
Payoff	8	16	8	0
Prob.	1	p_i^2	$2p_i(1-p_i)$	$(1-p_i)^2$

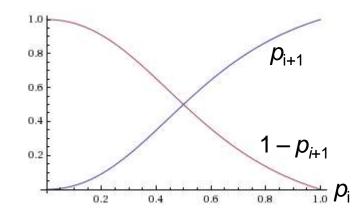
- $s_i = Stag$'s average payoff = $16p_i^2 + 16p_i(1-p_i) + 0(1-p_i)^2 = 16p_i$
- R_i = average payoff for all agents = $(p_i s_i + 8(1-p_i)) = 16p_i^2 8p_i + 8$
- ightharpoonup Thus $p_{i+1} = 16p_i^2 / (16p_i^2 8p_i + 8)$
 - If $p_1 = \frac{1}{2}$, then $p_i = \frac{1}{2}$ for all *i* (more about this later)
 - If $p_1 < \frac{1}{2}$, then $p_i \rightarrow 0$
 - If $p_1 > \frac{1}{2}$, then $p_i \to 1$
- Larger group gets a bigger average payoff

=> group grows even bigger even larger avg. payoff



Replicator Dynamic (continued)

- On the previous slide, I said
 - If $p_1 = \frac{1}{2}$, then $p_i = \frac{1}{2}$ for all *i*
 - > That neglects the effects of random variation
- Random variation => eventually we'll get a stage j for which $p_i \neq \frac{1}{2}$
 - If $p_i < \frac{1}{2}$, then $p_i \rightarrow 0$
 - If $p_i > \frac{1}{2}$, then $p_i \to 1$
 - $ightharpoonup p_i
 ightharpoonup 1$ are equally likely
- Confirmed by simulation:
 - ➤ 200 simulation runs, each starting with 3000 *Stag* and 3000 *Hare*
 - 101 runs converged to 100% Stag
 - 99 runs converged to 100% Hare



Imitate-the-Better Dynamic

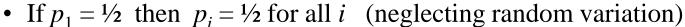
- Compare pairs of randomly chosen agents
 - > Reproduce the one with the higher payoff
 - ➤ Same payoff => probability ½ for each

	Hare		Stag	
Payoff	8	16	8	0
Prob.	1	p_i^2	$2p_i(1-p_i)$	$(1-p_i)^2$

• $p_{i+1} = P(Stag \text{ vs } Stag) \cdot 1 + P(Hare \text{ vs } Hare) \cdot 0 + P(Stag \text{ vs } Hare) [P(Stag's \text{ payoff is } 16) + \frac{1}{2} P(Stag's \text{ payoff is } 8)]$

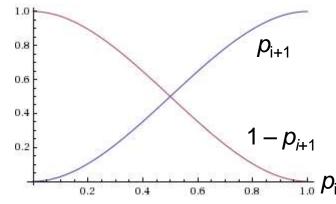
=
$$p_i^2 + 2p_i(1-p_i)[p_i^2 + p_i(1-p_i)] = 3p_i^2 - 2p_i^3$$

- If $p_1 > \frac{1}{2}$, then $p_j \to 1$
- If $p_1 < \frac{1}{2}$, then $p_i \rightarrow 0$



- \rightarrow Random variation => $p_i \rightarrow 0$ or $p_i \rightarrow 1$, each equally likely
- > Simulation results similar to before:

101 runs converged to Stag, 99 converged to Hare



Double Stag Hunt with RwS

- In the Double Stag Hunt, RwS does conditional cooperation
 - ➤ 1st time: hunt stag (risky choice)
 - > 2nd time: If payoff was 8 (other hunter cooperated) the 1st time,
 - then hunt hare (safe)
 - otherwise hunt stag (risky)
- Suppose we start with equal numbers of *Stag* and *Hare* agents, and a very small number of *RwS* agents
- Would anyone care to guess what will happen?

Stag, Hare, and RwS

- 200 simulation runs, starting with 3000 *Stag* agents, 3000 *Hare* agents, 30 *RwS* agents
 - ➤ Didn't converge to *RwS*
 - ➤ With the replicator dynamic, *RwS* made convergence to *Stag* slightly more likely
 - ➤ With the imitate-the-better dynamic, *RwS* made convergence to *Stag* much more likely

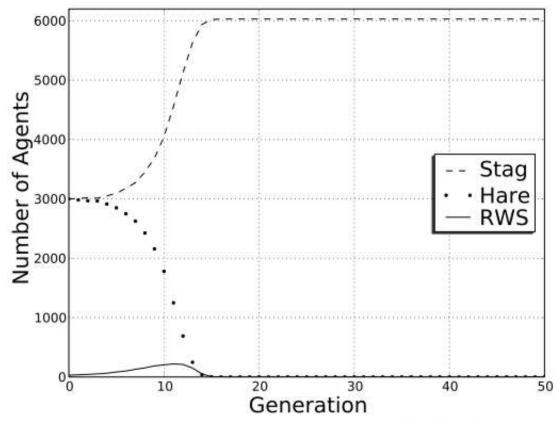
	Wi	thout RwS	Wi	With 30 RwS			
	Replicator	Imitate-the-better	Replicator	Imitate-the-better			
Converge to Stag	101	101	110	138			
Converge to Hare	99	99	90	62			
Converge to RwS			0	0			

RwS Catalyzes Growth of Stag

- The following effect occurs with both the replicator dynamic and the imitate-the-better dynamic:
 - \triangleright In the 1st stag hunt, RwS plays Stag
 - Slightly increases the *Stag* strategy's payoff
 - \triangleright In the 2nd stag hunt
 - Nearly equal probabilities that *RwS* won or lost the 1st stag hunt
 - => nearly equal probabilities that it will play *Stag* or *Hare*
 - => not much effect on the *Stag* strategy's payoff
 - > Overall, a slight advantage for *Stag*
 - => slightly more likely to converge to *Stag*

RwS Catalyzes Growth of Stag

- With the imitate-the-better dynamic, *RwS* has another, stronger effect
- Initially, equal numbers of *Stag* and *Hare*
 - => RwS has an advantage over Hare (like RwS and S in the double lottery)
 - => RwS agents increase, Hare agents decrease
- But fewer *Hare*
 - => *Stag* gets higher payoffs
 - => Stag agents increase
 - => Stag gets even higher payoffs
- Eventually Stag has an advantage over both RwS and Hare
 - => converge to all *Stag*; *RwS* and *Hare*both go extinct



Nau: Hawaii, 2010: 40

Conclusion

- Initial steps in exploring risk preferences through evolutionary games
- Double lottery game
 - ➤ Analogy between *RwS*'s behavior (conditional risk-taking) and human risk preferences
 - ➤ With all imitation dynamics except the replicator dynamic, *RwS* has an evolutionary advantage
 - ➤ This suggests a possible reason why state-dependent risk preferences might spread
 - But certainly not the only one, and we want to explore others
- Double stag hunt game
 - > Example of how to extend our results to games of social cooperation
 - ➤ Conditional cooperation (*RwS*) promoted the evolution of cooperation (*Stag*) in a situation where cooperating required a risky decision
 - RwS did this more strongly with the imitate-the-better dynamic

Thank you!

Any Questions?

- How to reach me
 - Dana Nau, <u>nau@cs.umd.edu</u>
 - http://www.cs.umd.edu/users/nau
- Publications based on this work:
 - ➤ P. Roos and D. Nau. Conditionally risky behavior vs expected value maximization in evolutionary games. In *Sixth Conference of the European Social Simulation Association (ESSA 2009)*, Sept. 2009.
 - ➤ P. Roos and D. S. Nau. State-dependent risk preferences in evolutionary games. In Chai, Salerno, and Mabry, editors, *Advances in Social Computing: Third International Conference on Social Computing, Behavioral Modeling, and Prediction, SBP 2010*, volume LNCS 6007, pp. 23–31. Springer, Mar. 2010.
 - ➤ P. Roos and D. Nau. Risk preference and sequential choice in evolutionary games. *Advances in Complex Systems*, 2010 (to appear).
 - ➤ P. Roos, R. Carr, and D. Nau. Evolution of state-dependent risk preferences. Submitted for journal publication.

