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Preface

 My research field is Artificial Intelligence

 Interdisciplinary research has interested me for a long time

 I’ve worked with researchers in at least 8 different academic disciplines

 Business, Computer Science, Electrical Engr., Industrial Engr., 

Mathematics, Mechanical Engr., Medicine, Political Science

 People in different fields can have very different notions of

 what questions are important

 what simplifying assumptions are appropriate

 what answers are reasonable

 how to describe what they’ve done

 This can make it hard to communicate intelligibly

 If what I say doesn’t make sense to you, please stop me and I’ll try to 

clarify it
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Introduction

 Joint work with two talented PhD students:

 Patrick Roos

 Ryan Carr

 Analyses and simulations using several evolutionary-game models

 Objective

 Explore some hypotheses about biological and cultural evolution of 

human risk preferences

 Explore effects of risk-taking on social cooperation
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Motivating Example

 Suppose you had to choose between two lotteries

 Lottery A: 

• you’re guaranteed to get $4,900

 Lottery B: 

• 50% chance that you’ll get $10,000 

• 50% chance that you’ll get nothing

 Which lottery would you choose?
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Decision Making Under Risk

 A well-known decision-theoretic criterion

 Maximize the expected value of the outcome

 From this point of view, Lottery B looks better

 Its expected value is ½ ($10,000) + ½ ($0) = $5000

 Lottery A’s expected value is only $4900

 But Lottery B also has a higher risk, and people often are risk-averse

 Choose an option whose expected value is lower,

if it avoids the possibility of an undesirable outcome
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Decision Making Under Risk

 There also are situations where people 

seek risk

 Choose a risky option if it offers

the possibility of escaping from

a bad situation

 Example from American football

 Hail Mary pass: a very long

forward pass with only a small

chance of success, made in

desperation when the clock

is running out
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Human Risk Behavior

 Subject of much empirical and theoretical study

 Evidence that human risk preferences are state-dependent

 Like your current situation => risk-averse

 Dislike your current situation enough => risk-seeking

 Several models of this

 e.g., Prospect Theory, Security-Potential/Aspiration (SP/A) theory
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Objectives and Approach

Questions we wanted to explore

 How might state-dependent risk behavior have come about?

 Several recent papers speculate about relation to evolutionary factors

Houston, McNamara, & Steer. Do we expect natural selection to produce rational 

behaviour? Philosophical Transactions of the Royal Society B 362 (2007) 1531–1543

J. R. Stevens. Rational decision making in primates: the bounded and the ecological. In 

Platt and Ghazanfar (eds.), Primate Neuroethology. Oxford University Press, 20110 (pp. 

98-116)

 How might it relate to cultural evolution?

 Boyd & Richerson. Culture and the evolutionary process. University of Chicago Press, 

1988.

Approach

 Analyses and simulations using evolutionary-game models intended to 

reflect both biological and cultural evolution
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Evolutionary Simulations

 Evolutionary simulation: a repeated stochastic game whose structure is 

intended to model certain aspects of evolutionary environments

 Consists of a number of stages or generations

 In each stage, there is a set of k agents (k is the total population size) 

 The agents interact in some kind of game-theoretic scenario

 Different agents have different strategies (ways of choosing actions)

 Each agent gets a numeric payoff that’s a stochastic function of the 

strategy profile (the strategies of all the agents)

 The payoffs are used in deciding what the set of agents will be at the next 

stage

Agents at  

stage 1

Agents at  

stage 2

Agents at  

stage 3
…
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Evolutionary Simulations

 Consider the set of all agents that use strategy s

 In a biological setting, s may represent a type of animal

 In a cultural setting, s may represent a learned behavior

 Over time, the number of agents using s may grow or shrink depending 

on how well s performs

 How this happens depends on the reproduction dynamic (next slide)

 At the end of the simulation, s’s reproductive success 

= proportion of agents that use s =  (number of agents that use s) / k ,

where k = total population size

Agents with

strategy s1

Agents with

strategy s2

…

A1 = {agents at stage 1} A2 = {agents at stage 2} A3 = {agents at stage 3}
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Reproduction Dynamics

 The reproduction dynamic is the mechanism for deciding

 which strategies will disappear

 which strategies will reproduce

 how many progeny they’ll have

 Many different

possible

reproduction

dynamics

 I’ll briefly

discuss two

of them

 Later I’ll

generalize

to others
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Reproduction Dynamics

 The reproduction dynamic is the mechanism for deciding

 which strategies will disappear

 which strategies will reproduce

 how many progeny they’ll have

 Many different

possible

reproduction

dynamics

 I’ll briefly

discuss two

of them

• No, not these two!

 Later I’ll

generalize

to others
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Reproduction Dynamics

Replicator dynamic:

 A strategy’s numbers grow or shrink proportionately

to how much better or worse it does than the average

 At stage i, let

• p = proportion of agents that use strategy s

• r = average payoff for those agents

• R = average payoff for all agents

 At stage i+1, the proportion of agents that use s

will be  p (r / R)

 Does well at reflecting growth of animal populations

(where strategy   type of animal)

 Less clear whether or not it’s the best model of economic or cultural behavior

 Thomas Riechmann. Genetic algorithm learning and evolutionary games. 

Journal of Economic Dynamics & Control 25 (2001), 1019–1037
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Reproduction Dynamics

Imitate-the-better dynamic:

 At stage i, let Ai = {all agents at stage i}

 To build Ai+1 , do the following steps k times:

 Randomly choose 2 agents in Ai

 Let a be the one that got the higher payoff

(or choose a at random if both got the same payoff)

 Add to Ai+1 an agent that uses a’s strategy

 A strategy’s numbers grow if it does better than average

 But the growth rate is different than with the

replicator dynamic

 Evidence that this does well at modeling how behaviors spread when 

people copy the behavior of others

 Offerman & Schotter. Imitation and luck: An experimental study on social 

sampling. Games and Economic Behavior 65:2 (2009), 461–502
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A Simple Lottery Game

 A repeated lottery game

 At each stage, agents make choices between two lotteries

 The safe lottery: guaranteed reward of 4

 The risky lottery: P(0) = ½ ; P(8) = ½ 

 Two pure (deterministic) strategies:

 S: always choose the safe lottery

 R: always choose the risky lottery
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Lottery Game, Replicator Dynamic

 At each stage, each strategy’s average payoff is 4

 Thus on average, each strategy’s population size should stay roughly 

constant

 Verified by simulation

for S and R

 We would have gotten

similar results for

any strategy that’s

a mixture of S and R
N

u
m

b
e
r 

o
f 

a
g
e
n
ts

Generation
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Lottery Game, Imitate-the-Better Dynamic

 Pick any two agents, and let s and t be their strategies

 Regardless of what s and t are, each agent has equal probability of getting a 

higher payoff than the other

 Again, each strategy’s

population size should

stay roughly constant

 Verified by simulation

for S and R

 Again, we would have 

gotten similar results

for any mixture of

S and R

N
u
m

b
e
r 

o
f 

a
g
e
n
ts

Generation
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Double Lottery Game

 At each stage, agents make two

rounds of lottery choices

1. Choose between

the safe lottery and

the risky lottery,

get a payoff

2. Choose between

the safe lottery and

the risky lottery 

again, and get an

additional payoff
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Double Lottery Game

There are 6 pure strategies:

 S: choose Safe both times

 SR: 1st time choose Safe 

2nd time choose Risky

 RS: 1st time Risky

2nd time Safe

 R: Risky both times

 RwS: 1st time Risky

 2nd time: if 1st time was

a win (payoff 8), then

Safe, otherwise Risky

 RwR: 1st time Risky

 2nd time: if 1st time was a win (payoff 8),

then Risky, otherwise Safe
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S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

Distribution of Payoffs for Each Strategy

 For every strategy, the 

expected value is 8

 But the distribution of 

payoffs differs

SR RSS R

RwS RwR
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Double Lottery Game, Replicator Dynamic

 At each stage, each strategy’s expected payoff is 8

 Thus on average, each strategy’s population size should stay roughly 

constant

 Verified by simulation

for all 6 strategies

N
u
m

b
e
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o
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a
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ts

Generation
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S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

Double Lottery Game,

Imitate-the-Better Dynamic

 For imitate-the-better, do the following k times:

 Choose two agents a and b, and compare their payofs

• Reproduce the one that got a higher payoff

• If they got the same payoff, choose either of them at random

 Suppose a uses S and b uses SR

 P(b gets 4) = ½     =>   a reproduces

 P(b gets 12) = ½   =>   b reproduces

 Thus a and b are equally likely to reproduce

ba
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S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

 Suppose a uses S and b uses RwS

 P(b gets 0)  =  ¼   =>  a reproduces

 P(b gets 8)  =  ¼   =>  a and b equally likely to reproduce

 P(b gets 12) = ½   =>  b reproduces

 Thus

 P(a reproduces) = ¼ + ½ (¼) = 0.375

 P(b reproduces) = ½ + ½ (¼) = 0.625

 RwS dominates S

ba

Double Lottery Game,

Imitate-the-Better Dynamic
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 In general:

 RwS dominates S, R, and RwR

• In a pair where one of the agents uses one of those strategies and the 

other uses RwS, the RwS agent is more likely to reproduce

 For all other pairs of strategies, neither dominates the other

• Both are equally likely to reproduce

Double Lottery Game,

Imitate-the-Better Dynamic

S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

Dominated by RwS
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 Start with equal numbers of all 6 strategies

 RwS has an advantage whenever it’s paired with S, R, or RwR

 RwS should

increase until

S, R, and RwR

become extinct

 For all other pairs

of strategies, neither

has an advantage

 Once S, R, and

RwR are extinct,

the population

should stabilize

 Verified by simulation  

N
u
m

b
e
r 

o
f 

a
g
e
n
ts

Generation

Double Lottery Game,

Imitate-the-Better Dynamic
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Discussion

 Lots of different possible reproduction dynamics

 The replicator dynamic and the imitate-the-better dynamic are thought to be 

good models of biological and cultural evolution, respectively

 But we’re not sure that either of them is a 100% accurate model,

so let’s look at other reproduction dynamics

 Hypothesis:

 For any reproduction dynamic other than the replicator dynamic, a 

strategy other than utility maximization is likely to do best

 To test this hypothesis, we need to examine

 Other reproduction dynamics

 Games in which the safe and risky lotteries have different expected 

payoffs

 That’s what I’ll discuss next …
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1. Other Reproduction Dynamics

 Imitation dynamics are a parameterized class of reproduction 

dynamics with a parameter 0 ≤ α ≤ 1

[Hofbauer & Sigmund. Evolutionary game dynamics.  Bulletin 

of the American Mathematical Society 40 (2003), 479–519] 

 Case α = 0: imitate-the-better

 Case α = 1: replicator dynamic

 Case 0 < α < 1: in between

 Theorem: For 0 < α < 1, RwS is evolutionarily stable.

 In a population that includes any mixture of RwS and the other 

strategies, RwS will go to 100% and the others will go extinct
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2. Other Expected Payoffs

 For the risky lottery, let

P(8) = p and  P(0) = 1–p

 Expected value is 8p

 Safe lottery’s payoff is still 4

SR RS

S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Prob. 1 p 1–p p 1–p p2 2p(1–p) (1–p)2 p p(1–p) (1–p)2 p2 p(1–p) 1–p

S R

RwS RwR
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Double Lottery Game

 For all values of p and α, compare RwS to S and R

S dominates RwS;
RwS dominates R

R dominates RwS; 
RwS dominates S

RwS dominates
both S and R

Imitate-the-
better dynamic

Replicator 
dynamic
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More Complex Interactions

 In the lottery games, each agent’s payoff depended only on its own choices 

 What about situations in which the agents interact?

 Instead of lotteries, use non-zero-sum games

 We used

the Stag

Hunt

Prisoner’s Dilemma Ultimatum GameRoshambo
Battle of

the Sexes

Matching Pennies

Stag Hunt

Chicken Game
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Hunter 2

Hunter 1

Stag 

(risky)

Hare 

(safe)

Stag (risky) 8, 8 0, 4

Hare (safe) 4, 0 4, 4

Stag Hunt

Stag Hunt

 Simple model of a situation where

one must decide whether to work

alone or cooperate with others

 Two hunters, each hunting for food

 Hunting for hare: solitary activity

 Small payoff (4), but safe:

• Same payoff, regardless of

what the other hunter does

 Hunting for stag: cooperative activity

 Possibility of a much bigger payoff (8), but risky:

• Payoff = 8 only if the other hunter cooperates

 In an evolutionary game setting, P(payoff = 8)

depends on the relative proportions of stag hunters

and hare hunters at stage i

Nash equilibria
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Evolutionary Double Stag Hunt

 Instead of two lotteries at each stage,

have two Stag Hunt games

 Randomly divide the agents into pairs, 

• Each pair plays Stag Hunt

 Randomly divide the agents

into pairs again

• Each pair plays another Stag Hunt

 6 pure strategies (by analogy with the double lottery game)

 But initially we’ll just be interested in two of them

 Stag: hunt stag both times (like the R strategy in the double lottery game)

 Hare: hunt hare both times (like the S strategy)

 Consider the case where every agent uses either Stag or Hare

Hunter 2

Hunter 1

Stag 

(risky)

Hare 

(safe)

Stag (risky) 8, 8 0, 4

Hare (safe) 4, 0 4, 4

Stag Hunt
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Evolutionary Double Stag Hunt

 Let pi = proportion of Stag agents at stage i

 Payoff for Hare is  4 + 4 = 8, regardless

of the other players’ strategies

 Payoff distribution for Stag:

 P(play against Stag twice) = pi
2          

=>  payoff = 8 + 8 = 16

 P(play against Hare twice)  = (1–pi)
2

=>  payoff = 0

 P(play once against each) = 2pi (1–pi)    

=>  payoff = 0 + 8 = 8

 Same formulas as for the double lottery, but with pi instead of p

 Amount of risk depends on how many agents of each type at stage i

 Examine what happens with replicator and imitate-the-better dynamics

Hare Stag

Payoff 8 16 8 0

Prob. 1 pi
2 2pi (1–pi) (1–pi)

2

Hunter 2

Hunter 1

Stag 

(risky)

Hare 

(safe)

Stag (risky) 8, 8 0, 4

Hare (safe) 4, 0 4, 4

Stag Hunt

Double Stag Hunt
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Replicator Dynamic

 Proportion of Stag agents at stage i+1 is

 pi+1 = pi si / Ri

 where

• si = Stag’s average payoff   =  16 pi
2 + 16 pi (1–pi) + 0 (1–pi)

2 =  16 pi

• Ri = average payoff for all agents  =  (pi si + 8(1-pi))  =  16 pi
2 –8 pi + 8 

 Thus pi+1 = 16pi
2 / (16pi

2 – 8 pi + 8)

• If p1 = ½, then pi = ½ for all i (more about this later)

• If p1 < ½, then pi 0

• If p1 > ½, then  pi 1

 Larger group gets a bigger average payoff

=>       group grows         even bigger

even larger           avg. payoff

Hare Stag

Payoff 8 16 8 0

Prob. 1 pi
2 2pi (1–pi) (1–pi)

2

pi+1

1 – pi+1

pi
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Replicator Dynamic (continued)

 On the previous slide, I said

• If p1 = ½, then pi = ½ for all i

 That neglects the effects of random variation

 Random variation  =>  eventually we’ll get a stage j for which pj ≠ ½

• If pj < ½, then pi 0

• If pj > ½, then  pi 1

 pi 0 and  pi 1 are equally likely

 Confirmed by simulation:

 200 simulation runs, each starting

with 3000 Stag and 3000 Hare

• 101 runs converged to 100% Stag

• 99 runs converged to 100% Hare

pi+1

1 – pi+1

pi
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pi

pi+1

1 – pi+1

Imitate-the-Better Dynamic

 Compare pairs of randomly chosen agents

 Reproduce the one with the higher payoff

 Same payoff => probability ½ for each

 pi+1 = P(Stag vs Stag) • 1 + P(Hare vs Hare) • 0

+ P(Stag vs Hare) [P(Stag’s payoff is 16) + ½ P(Stag’s payoff is 8)]

= pi
2 + 2pi (1–pi) [pi

2 + pi (1–pi)] = 3 pi
2 – 2pi

3

 Outcome similar to before:

• If p1 > ½, then  pj 1

• If p1 < ½, then pj 0

• If p1 = ½  then  pi = ½ for all i (neglecting random variation)

› Random variation => pi 0 or  pi 1, each equally likely

 Simulation results similar to before:

• 101 runs converged to Stag, 99 converged to Hare

Hare Stag

Payoff 8 16 8 0

Prob. 1 pi
2 2pi (1–pi) (1–pi)

2
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Double Stag Hunt with RwS

 In the Double Stag Hunt, RwS does conditional cooperation

 1st time: hunt stag (risky choice)

 2nd time: If payoff was 8 (other hunter cooperated) the 1st time,

• then hunt hare (safe)

• otherwise hunt stag (risky)

 Suppose we start with equal numbers of Stag and Hare agents, and a very

small number of RwS agents

 Would anyone care to guess what will happen?
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Stag, Hare, and RwS

 200 simulation runs, starting with 3000 Stag agents, 3000 Hare agents, 

30 RwS agents

 Didn’t converge to RwS

 With the replicator dynamic, RwS made convergence to Stag slightly 

more likely

 With the imitate-the-better dynamic, RwS made convergence to Stag

much more likely

Without RwS With 30 RwS

Replicator Imitate-the-better Replicator Imitate-the-better

Converge to Stag 101 101 110 138

Converge to Hare 99 99 90 62

Converge to RwS ––– ––– 0 0
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RwS Catalyzes Growth of Stag

 The following effect occurs with both the replicator dynamic and the 

imitate-the-better dynamic:

 In the 1st stag hunt, RwS plays Stag

• Slightly increases the Stag strategy’s payoff

 In the 2nd stag hunt

• Nearly equal probabilities that RwS won or lost the 1st stag hunt

• => nearly equal probabilities that it will play Stag or Hare

• => not much effect on the Stag strategy’s payoff

 Overall, a slight advantage for Stag

• => slightly more likely to converge to Stag



Nau: Hawaii, 2010:  40

RwS Catalyzes Growth of Stag

 With the imitate-the-better dynamic, RwS has another, stronger effect

 Initially, equal numbers of Stag and Hare

=> RwS has an advantage over Hare (like RwS and S in the double lottery)

=>  RwS agents increase, Hare agents decrease

 But fewer Hare

=> Stag gets higher payoffs

=> Stag agents increase

=> Stag gets even higher

payoffs

 Eventually Stag has

an advantage over

both RwS and Hare

=> converge to all Stag; 

RwS and Hare

both go extinct
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Conclusion

 Initial steps in exploring risk preferences through evolutionary games 

 Double lottery game

 Analogy between RwS’s behavior (conditional risk-taking)

and human risk preferences

 With all imitation dynamics except the replicator dynamic, RwS has an 

evolutionary advantage

 This suggests a possible reason why state-dependent risk preferences 

might spread

• But certainly not the only one, and we want to explore others

 Double stag hunt game

 Example of how to extend our results to games of social cooperation

 Conditional cooperation (RwS) promoted the evolution of cooperation 

(Stag) in a situation where cooperating required a risky decision

• RwS did this more strongly with the imitate-the-better dynamic
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 How to reach me

 Dana Nau, nau@cs.umd.edu

 http://www.cs.umd.edu/users/nau

 Publications based on this work:

 P. Roos and D. Nau. Conditionally risky behavior vs expected value maximization in 

evolutionary games. In Sixth Conference of the European Social Simulation 

Association (ESSA 2009), Sept. 2009. 

 P. Roos and D. S. Nau. State-dependent risk preferences in evolutionary games. In 

Chai, Salerno, and Mabry, editors, Advances in Social Computing: Third 

International Conference on Social Computing, Behavioral Modeling, and 

Prediction, SBP 2010, volume LNCS 6007, pp. 23–31. Springer, Mar. 2010.

 P. Roos and D. Nau. Risk preference and sequential choice in evolutionary games. 

Advances in Complex Systems, 2010 (to appear).

 P. Roos, R. Carr, and D. Nau. Evolution of state-dependent risk preferences. 

Submitted for journal publication.
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