Evolution of State-Dependent Risk Preferences in Social-Modeling Games

Patrick Roos, Ryan Carr, and Dana Nau

Department of Computer Science,
Institute for Systems Research, and
Laboratory for Computational Cultural Dynamics

Preface

- My research field is Artificial Intelligence
- Interdisciplinary research has interested me for a long time
$>$ I've worked with researchers in at least 8 different academic disciplines
$>$ Business, Computer Science, Electrical Engr., Industrial Engr., Mathematics, Mechanical Engr., Medicine, Political Science
- People in different fields can have very different notions of
$>$ what questions are important
> what simplifying assumptions are appropriate
$>$ what answers are reasonable
$>$ how to describe what they've done
- This can make it hard to communicate intelligibly
$>$ If what I say doesn't make sense to you, please stop me and I'll try to clarify it

Introduction

- Joint work with two talented PhD students:
> Patrick Roos
> Ryan Carr
- Analyses and simulations using several evolutionary-game models
- Objective
> Explore some hypotheses about biological and cultural evolution of human risk preferences
> Explore effects of risk-taking on social cooperation

Motivating Example

- Suppose you had to choose between two lotteries
> Lottery A:
- you're guaranteed to get $\$ 4,900$
> Lottery B :
- 50% chance that you'll get $\$ 10,000$
- 50% chance that you'll get nothing
- Which lottery would you choose?

Decision Making Under Risk

- A well-known decision-theoretic criterion
> Maximize the expected value of the outcome
- From this point of view, Lottery B looks better
$>$ Its expected value is $1 / 2(\$ 10,000)+1 / 2(\$ 0)=\$ 5000$
$>$ Lottery A's expected value is only $\$ 4900$
- But Lottery B also has a higher risk, and people often are risk-averse
> Choose an option whose expected value is lower, if it avoids the possibility of an undesirable outcome

Decision Making Under Risk

- There also are situations where people seek risk
> Choose a risky option if it offers the possibility of escaping from a bad situation
- Example from American football
> Hail Mary pass: a very long forward pass with only a small chance of success, made in desperation when the clock is running out

Human Risk Behavior

- Subject of much empirical and theoretical study
- Evidence that human risk preferences are state-dependent
> Like your current situation => risk-averse
> Dislike your current situation enough => risk-seeking
- Several models of this
> e.g., Prospect Theory, Security-Potential/Aspiration (SP/A) theory

Objectives and Approach

Questions we wanted to explore

- How might state-dependent risk behavior have come about?
> Several recent papers speculate about relation to evolutionary factors
Houston, McNamara, \& Steer. Do we expect natural selection to produce rational behaviour? Philosophical Transactions of the Royal Society B 362 (2007) 1531-1543
J. R. Stevens. Rational decision making in primates: the bounded and the ecological. In Platt and Ghazanfar (eds.), Primate Neuroethology. Oxford University Press, 20110 (pp. 98-116)
- How might it relate to cultural evolution?
> Boyd \& Richerson. Culture and the evolutionary process. University of Chicago Press, 1988.

Approach

- Analyses and simulations using evolutionary-game models intended to reflect both biological and cultural evolution

Evolutionary Simulations

- Evolutionary simulation: a repeated stochastic game whose structure is intended to model certain aspects of evolutionary environments
> Consists of a number of stages or generations
- In each stage, there is a set of k agents (k is the total population size)
> The agents interact in some kind of game-theoretic scenario
> Different agents have different strategies (ways of choosing actions)
$>$ Each agent gets a numeric payoff that's a stochastic function of the strategy profile (the strategies of all the agents)
- The payoffs are used in deciding what the set of agents will be at the next stage

Evolutionary Simulations

- Consider the set of all agents that use strategy s
> In a biological setting, s may represent a type of animal
> In a cultural setting, s may represent a learned behavior
- Over time, the number of agents using s may grow or shrink depending on how well s performs
> How this happens depends on the reproduction dynamic (next slide)
- At the end of the simulation, s 's reproductive success $=$ proportion of agents that use $s=$ (number of agents that use s) $/ k$, where $k=$ total population size

$A_{1}=\{$ agents at stage 1$\} \quad A_{2}=\{$ agents at stage 2$\} \quad A_{3}=\{$ agents at stage 3$\}$

Reproduction Dynamics

- The reproduction dynamic is the mechanism for deciding
> which strategies will disappear
> which strategies will reproduce
> how many progeny they'll have
- Many different possible reproduction dynamics
> I'll briefly discuss two of them
- Later I'll generalize to others

Reproduction Dynamics

- The reproduction dynamic is the mechanism for deciding
> which strategies will disappear
> which strategies will reproduce
> how many progeny they'll have
- Many different possible reproduction dynamics
> I'll briefly discuss two of them
- No, not these two!
- Later I'll generalize to others

Reproduction Dynamics

Replicator dynamic:

- A strategy's numbers grow or shrink proportionately to how much better or worse it does than the average
> At stage i, let
- $p=$ proportion of agents that use strategy s
- $r=$ average payoff for those agents
- $R=$ average payoff for all agents
$>$ At stage $i+1$, the proportion of agents that use s will be $p(r / R)$
- Does well at reflecting growth of animal populations
 (where strategy \Leftrightarrow type of animal)
- Less clear whether or not it's the best model of economic or cultural behavior
> Thomas Riechmann. Genetic algorithm learning and evolutionary games. Journal of Economic Dynamics \& Control 25 (2001), 1019-1037

Reproduction Dynamics

Imitate-the-better dynamic:

- At stage i, let $A_{i}=\{$ all agents at stage $i\}$
- To build A_{i+1}, do the following steps k times:
$>$ Randomly choose 2 agents in A_{i}
$>$ Let a be the one that got the higher payoff (or choose a at random if both got the same payoff)
$>$ Add to A_{i+1} an agent that uses a 's strategy
- A strategy's numbers grow if it does better than average
>But the growth rate is different than with the
 replicator dynamic
- Evidence that this does well at modeling how behaviors spread when people copy the behavior of others
> Offerman \& Schotter. Imitation and luck: An experimental study on social sampling. Games and Economic Behavior 65:2 (2009), 461-502

A Simple Lottery Game

- A repeated lottery game
- At each stage, agents make choices between two lotteries
> The safe lottery: guaranteed reward of 4
> The risky lottery: $P(0)=1 / 2 ; P(8)=1 / 2$
- Two pure (deterministic) strategies:
> S: always choose the safe lottery
$>R$: always choose the risky lottery

Lottery Game, Replicator Dynamic

- At each stage, each strategy's average payoff is 4
> Thus on average, each strategy's population size should stay roughly constant
- Verified by simulation for S and R
- We would have gotten similar results for any strategy that's a mixture of S and R

Lottery Game, Imitate-the-Better Dynamic

- Pick any two agents, and let s and t be their strategies
- Regardless of what s and t are, each agent has equal probability of getting a higher payoff than the other
> Again, each strategy's population size should stay roughly constant
- Verified by simulation for S and R
- Again, we would have gotten similar results for any mixture of S and R

Double Lottery Game

- At each stage, agents make two rounds of lottery choices

1. Choose between the safe lottery and the risky lottery, get a payoff
2. Choose between the safe lottery and the risky lottery again, and get an additional payoff

Double Lottery Game

There are 6 pure strategies:

- S : choose Safe both times
- SR: $1^{\text {st }}$ time choose Safe $2^{\text {nd }}$ time choose Risky
- $R S$: $1^{\text {st }}$ time Risky $2^{\text {nd }}$ time Safe
- R : Risky both times
- RwS: $1^{\text {st }}$ time Risky
$>2^{\text {nd }}$ time: if $1^{\text {st }}$ time was a win (payoff 8), then Safe, otherwise Risky
- RwR: $1^{\text {st }}$ time Risky

$>2^{\text {nd }}$ time: if $1^{\text {st }}$ time was a win (payoff 8), then Risky, otherwise Safe

Distribution of Payoffs for Each Strategy

	S	$S R$		$R S$		R			$R w S$			$R w R$		
Payoff	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{4}$	$\mathbf{1 2}$	$\mathbf{4}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{1 2}$	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{1 6}$	$\mathbf{8}$	
Probability	1	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 4$	$1 / 2$	$1 / 4$	$1 / 2$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	

Double Lottery Game, Replicator Dynamic

- At each stage, each strategy's expected payoff is 8
> Thus on average, each strategy's population size should stay roughly constant
- Verified by simulation for all 6 strategies

Double Lottery Game, Imitate-the-Better Dynamic

- For imitate-the-better, do the following k times:
> Choose two agents a and b, and compare their payofs
- Reproduce the one that got a higher payoff
- If they got the same payoff, choose either of them at random
- Suppose a uses S and b uses $S R$
$\Rightarrow P(b$ gets 4$)=1 / 2 \quad \Rightarrow \quad a$ reproduces
$>P(b$ gets 12$)=1 / 2 \Rightarrow b$ reproduces
- Thus a and b are equally likely to reproduce

	S	SR				R			RwS			RwR	
Payoff	8	124	12	4	16	8	0	12	8	0	16	8	4
Probability	1	$1 / 2 \quad 1 / 2$	$1 / 2$	1/2	1/4	1/2	$1 / 4$	$1 / 2$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 2$

Double Lottery Game, Imitate-the-Better Dynamic

- Suppose a uses S and b uses $R w S$
$>P(b$ gets 0$)=1 / 4 \Rightarrow a$ reproduces
> $P(b$ gets 8$)=1 / 4 \Rightarrow a$ and b equally likely to reproduce
$>P(b$ gets 12$)=1 / 2 \Rightarrow b$ reproduces
- Thus
> $P(a$ reproduces $)=1 / 4+1 / 2(1 / 4)=0.375$
> $P(b$ reproduces $)=1 / 2+1 / 2(1 / 4)=0.625$
- $R w S$ dominates S

$a \mathrm{~b}$														
	S	SR		$R S$		R			RwS			$R w R$		
Payoff	8	12	4		4	16	8	0	12	8	0	16	8	4
Probability	1		$1 / 2$		$1 / 2$	$1 / 4$	1/2	$1 / 4$	$1 / 2$	$1 / 4$	$1 / 4$	1/4	$1 / 4$	$1 / 2$

Double Lottery Game, Imitate-the-Better Dynamic

- In general:
$>R w S$ dominates S, R, and $R w R$
- In a pair where one of the agents uses one of those strategies and the other uses $R w S$, the $R w S$ agent is more likely to reproduce
> For all other pairs of strategies, neither dominates the other
- Both are equally likely to reproduce

Double Lottery Game, Imitate-the-Better Dynamic

- Start with equal numbers of all 6 strategies
- $R w S$ has an advantage whenever it's paired with S, R, or $R w R$
> $R w S$ should increase until S, R, and $R w R$ become extinct
- For all other pairs of strategies, neither has an advantage
$>$ Once S, R, and $R w R$ are extinct, the population should stabilize
- Verified by simulation \rightarrow

Discussion

- Lots of different possible reproduction dynamics
- The replicator dynamic and the imitate-the-better dynamic are thought to be good models of biological and cultural evolution, respectively
> But we're not sure that either of them is a 100% accurate model, so let's look at other reproduction dynamics
- Hypothesis:
> For any reproduction dynamic other than the replicator dynamic, a strategy other than utility maximization is likely to do best
- To test this hypothesis, we need to examine
> Other reproduction dynamics
> Games in which the safe and risky lotteries have different expected payoffs
- That's what I'll discuss next ...

1. Other Reproduction Dynamics

- Imitation dynamics are a parameterized class of reproduction dynamics with a parameter $0 \leq \alpha \leq 1$
[Hofbauer \& Sigmund. Evolutionary game dynamics. Bulletin
of the American Mathematical Society 40 (2003), 479-519]
$>$ Case $\alpha=0$: imitate-the-better
$>$ Case $\alpha=1$: replicator dynamic
$>$ Case $0<\alpha<1$: in between
- Theorem: For $0<\alpha<1, R w S$ is evolutionarily stable.
- In a population that includes any mixture of $R w S$ and the other strategies, $R w S$ will go to 100% and the others will go extinct

2. Other Expected Payoffs

- For the risky lottery, let $P(8)=p$ and $P(0)=1-p$
> Expected value is $8 p$
- Safe lottery's payoff is still 4

	S	SR		RS		R			RwS			$R w R$		
Payoff	8	12	4	12	4	16	8	0	12	8	0	16	8	4
Prob.	1	p	$1-p$	p	$1-p$	p^{2}	$2 p(1-p)$	$(1-p)^{2}$		$p(1-p)$	$(1-p)^{2}$		$p(1-p)$	$1-p$

Double Lottery Game

- For all values of p and α, compare $R w S$ to S and R

More Complex Interactions

- In the lottery games, each agent's payoff depended only on its own choices
> What about situations in which the agents interact?
> Instead of lotteries, use non-zero-sum games
- We used the Stag Hunt

Stag Hunt

- Simple model of a situation where one must decide whether to work alone or cooperate with others
- Two hunters, each hunting for food
- Hunting for hare: solitary activity
> Small payoff (4), but safe:
- Same payoff, regardless of

Stag Hunt

Hunter 2	Stag (risky)	Hare (safe)
Stag (risky)	8,8	0,4
Hare (safe)	4,0	4,4
Nash equilibria		

- Hunting for stag: cooperative activity
> Possibility of a much bigger payoff (8), but risky:
- Payoff $=8$ only if the other hunter cooperates
> In an evolutionary game setting, $P($ payoff $=8)$ depends on the relative proportions of stag hunters and hare hunters at stage i

Evolutionary Double Stag Hunt

- Instead of two lotteries at each stage, have two Stag Hunt games
> Randomly divide the agents into pairs,
- Each pair plays Stag Hunt
> Randomly divide the agents
Stag Hunt

Hunter 2	Stag (risky)	Hare (safe)
Stag (risky)	8,8	0,4
Hare (safe)	4,0	4,4

- Each pair plays another Stag Hunt
- 6 pure strategies (by analogy with the double lottery game)
- But initially we'll just be interested in two of them
> Stag: hunt stag both times (like the R strategy in the double lottery game)
> Hare: hunt hare both times (like the S strategy)
- Consider the case where every agent uses either Stag or Hare

Evolutionary Double Stag Hunt

- Let $p_{i}=$ proportion of Stag agents at stage i
- Payoff for Hare is $4+4=8$, regardless of the other players' strategies
- Payoff distribution for Stag:
> $P($ play against $S t a g$ twice $)=p_{i}{ }^{2}$

$$
\Rightarrow \text { payoff }=8+8=16
$$

$>P($ play against Hare twice $)=\left(1-p_{i}\right)^{2}$

$$
\text { => payoff }=0
$$

> $P($ play once against each $)=2 p_{i}\left(1-p_{i}\right)$
\Rightarrow payoff $=0+8=8$
Stag Hunt

Hunter 2	Stag (risky)	Hare (safe)
Stag (risky)	8,8	0,4
Hare (safe)	4,0	4,4

Double Stag Hunt

	Hare	Stag		
Payoff	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{0}$
Prob.	1	$p_{i}{ }^{2}$	$2 p_{i}\left(1-p_{i}\right)$	$\left(1-p_{i}\right)^{2}$

- Same formulas as for the double lottery, but with p_{i} instead of p
$>$ Amount of risk depends on how many agents of each type at stage i
- Examine what happens with replicator and imitate-the-better dynamics

Replicator Dynamic

- Proportion of Stag agents at stage $i+1$ is
$>p_{i+1}=p_{i} s_{i} / R_{i}$
> where

	Hare	Stag		
Payoff	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{0}$
Prob.	1	$p_{i}{ }^{2}$	$2 p_{i}\left(1-p_{i}\right)$	$\left(1-p_{i}\right)^{2}$

- $s_{i}=$ Stag's average payoff $=16 p_{i}^{2}+16 p_{i}\left(1-p_{i}\right)+0\left(1-p_{i}\right)^{2}=16 p_{i}$
- $R_{i}=$ average payoff for all agents $=\left(p_{i} s_{i}+8\left(1-p_{i}\right)\right)=16 p_{i}^{2}-8 p_{i}+8$
$>$ Thus $p_{i+1}=16 p_{i}^{2} /\left(16 p_{i}^{2}-8 p_{i}+8\right)$
- If $p_{1}=1 / 2$, then $p_{i}=1 / 2$ for all i (more about this later)
- If $p_{1}<1 / 2$, then $p_{i} \rightarrow 0$
- If $p_{1}>1 / 2$, then $p_{i} \rightarrow 1$
- Larger group gets a bigger average payoff $\Rightarrow \quad$ group grows $\rightarrow \stackrel{\text { even bigger }}{\text { even larger }}$

Replicator Dynamic (continued)

- On the previous slide, I said
- If $p_{1}=1 / 2$, then $p_{i}=1 / 2$ for all i
> That neglects the effects of random variation
- Random variation $\Rightarrow>$ eventually we'll get a stage j for which $p_{j} \neq 1 / 2$
- If $p_{j}<1 / 2$, then $p_{i} \rightarrow 0$
- If $p_{j}>1 / 2$, then $p_{i} \rightarrow 1$
$>p_{i} \rightarrow 0$ and $p_{i} \rightarrow 1$ are equally likely
- Confirmed by simulation:
> 200 simulation runs, each starting with 3000 Stag and 3000 Hare

- 101 runs converged to 100% Stag
- 99 runs converged to 100% Hare

Imitate-the-Better Dynamic

- Compare pairs of randomly chosen agents
$>$ Reproduce the one with the higher payoff
> Same payoff => probability $1 / 2$ for each

	Hare	Stag		
Payoff	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{0}$
Prob.	1	$p_{i}{ }^{2}$	$2 p_{i}\left(1-p_{i}\right)$	$\left(1-p_{i}\right)^{2}$

- $p_{i+1}=P($ Stag vs Stag $) \cdot 1+P($ Hare vs Hare $) \cdot 0$
$+P($ Stag vs Hare $)[P($ Stag's payoff is 16$)+1 / 2 P($ Stag's payoff is 8$)]$
$=p_{i}^{2}+2 p_{i}\left(1-p_{i}\right)\left[p_{i}^{2}+p_{i}\left(1-p_{i}\right)\right]=3 p_{i}^{2}-2 p_{i}^{3}$
$>$ Outcome similar to before:
- If $p_{1}>1 / 2$, then $p_{j} \rightarrow 1$
- If $p_{1}<1 / 2$, then $p_{j} \rightarrow 0$

- If $p_{1}=1 / 2$ then $p_{i}=1 / 2$ for all i (neglecting random variation)
> Random variation $=>p_{i} \rightarrow 0$ or $p_{i} \rightarrow 1$, each equally likely
$>$ Simulation results similar to before:
- 101 runs converged to Stag, 99 converged to Hare

Double Stag Hunt with RwS

- In the Double Stag Hunt, $R w S$ does conditional cooperation
$>1^{\text {st }}$ time: hunt stag (risky choice)
$>2^{\text {nd }}$ time: If payoff was 8 (other hunter cooperated) the $1^{\text {st }}$ time,
- then hunt hare (safe)
- otherwise hunt stag (risky)
- Suppose we start with equal numbers of Stag and Hare agents, and a very small number of $R w S$ agents
- Would anyone care to guess what will happen?

Stag, Hare, and RwS

- 200 simulation runs, starting with 3000 Stag agents, 3000 Hare agents, 30 RwS agents
$>$ Didn't converge to $R w S$
> With the replicator dynamic, $R w S$ made convergence to Stag slightly more likely
> With the imitate-the-better dynamic, $R w S$ made convergence to Stag much more likely

	Without $\boldsymbol{R w} \boldsymbol{S}$		With 30 $\boldsymbol{R} \boldsymbol{w} \boldsymbol{S}$	
	Replicator	Imitate-the-better	Replicator	Imitate-the-better
Converge to Stag	101	101	110	138
Converge to Hare	99	99	90	62
Converge to $\boldsymbol{R} \boldsymbol{w} \boldsymbol{S}$	-	-	0	0

RwS Catalyzes Growth of Stag

- The following effect occurs with both the replicator dynamic and the imitate-the-better dynamic:
$>$ In the $1^{\text {st }}$ stag hunt, $R w S$ plays Stag
- Slightly increases the Stag strategy's payoff
$>$ In the $2^{\text {nd }}$ stag hunt
- Nearly equal probabilities that $R w S$ won or lost the $1^{\text {st }}$ stag hunt
- => nearly equal probabilities that it will play Stag or Hare
- => not much effect on the Stag strategy's payoff
> Overall, a slight advantage for Stag
- => slightly more likely to converge to Stag

RwS Catalyzes Growth of Stag

- With the imitate-the-better dynamic, $R w S$ has another, stronger effect
- Initially, equal numbers of Stag and Hare
=> $R w S$ has an advantage over Hare (like $R w S$ and S in the double lottery)
=> RwS agents increase, Hare agents decrease
- But fewer Hare
=> Stag gets higher payoffs
=> Stag agents increase
=> Stag gets even higher payoffs
- Eventually Stag has an advantage over both RwS and Hare
=> converge to all Stag; $R w S$ and Hare both go extinct

Conclusion

- Initial steps in exploring risk preferences through evolutionary games
- Double lottery game
> Analogy between $R w S$'s behavior (conditional risk-taking) and human risk preferences
> With all imitation dynamics except the replicator dynamic, $R w S$ has an evolutionary advantage
> This suggests a possible reason why state-dependent risk preferences might spread
- But certainly not the only one, and we want to explore others
- Double stag hunt game
> Example of how to extend our results to games of social cooperation
> Conditional cooperation ($R w S$) promoted the evolution of cooperation (Stag) in a situation where cooperating required a risky decision
- $R w S$ did this more strongly with the imitate-the-better dynamic

Thank you!

Any Questions?

- How to reach me
> Dana Nau, nau@cs.umd.edu
> http://www.cs.umd.edu/users/nau
- Publications based on this work:
> P. Roos and D. Nau. Conditionally risky behavior vs expected value maximization in evolutionary games. In Sixth Conference of the European Social Simulation Association (ESSA 2009), Sept. 2009.
> P. Roos and D. S. Nau. State-dependent risk preferences in evolutionary games. In Chai, Salerno, and Mabry, editors, Advances in Social Computing: Third International Conference on Social Computing, Behavioral Modeling, and Prediction, SBP 2010, volume LNCS 6007, pp. 23-31. Springer, Mar. 2010.
> P. Roos and D. Nau. Risk preference and sequential choice in evolutionary games. Advances in Complex Systems, 2010 (to appear).
> P. Roos, R. Carr, and D. Nau. Evolution of state-dependent risk preferences. Submitted for journal publication.

