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Preface

 My research field is Artificial Intelligence

 Interdisciplinary research has interested me for a long time

 I’ve worked with researchers in at least 8 different academic disciplines

 Business, Computer Science, Electrical Engr., Industrial Engr., 

Mathematics, Mechanical Engr., Medicine, Political Science

 People in different fields can have very different notions of

 what questions are important

 what simplifying assumptions are appropriate

 what answers are reasonable

 how to describe what they’ve done

 This can make it hard to communicate intelligibly

 If what I say doesn’t make sense to you, please stop me and I’ll try to 

clarify it
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Introduction

 Joint work with two talented PhD students:

 Patrick Roos

 Ryan Carr

 Analyses and simulations using several evolutionary-game models

 Objective

 Explore some hypotheses about biological and cultural evolution of 

human risk preferences

 Explore effects of risk-taking on social cooperation
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Motivating Example

 Suppose you had to choose between two lotteries

 Lottery A: 

• you’re guaranteed to get $4,900

 Lottery B: 

• 50% chance that you’ll get $10,000 

• 50% chance that you’ll get nothing

 Which lottery would you choose?
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Decision Making Under Risk

 A well-known decision-theoretic criterion

 Maximize the expected value of the outcome

 From this point of view, Lottery B looks better

 Its expected value is ½ ($10,000) + ½ ($0) = $5000

 Lottery A’s expected value is only $4900

 But Lottery B also has a higher risk, and people often are risk-averse

 Choose an option whose expected value is lower,

if it avoids the possibility of an undesirable outcome
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Decision Making Under Risk

 There also are situations where people 

seek risk

 Choose a risky option if it offers

the possibility of escaping from

a bad situation

 Example from American football

 Hail Mary pass: a very long

forward pass with only a small

chance of success, made in

desperation when the clock

is running out
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Human Risk Behavior

 Subject of much empirical and theoretical study

 Evidence that human risk preferences are state-dependent

 Like your current situation => risk-averse

 Dislike your current situation enough => risk-seeking

 Several models of this

 e.g., Prospect Theory, Security-Potential/Aspiration (SP/A) theory
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Objectives and Approach

Questions we wanted to explore

 How might state-dependent risk behavior have come about?

 Several recent papers speculate about relation to evolutionary factors

Houston, McNamara, & Steer. Do we expect natural selection to produce rational 

behaviour? Philosophical Transactions of the Royal Society B 362 (2007) 1531–1543

J. R. Stevens. Rational decision making in primates: the bounded and the ecological. In 

Platt and Ghazanfar (eds.), Primate Neuroethology. Oxford University Press, 20110 (pp. 

98-116)

 How might it relate to cultural evolution?

 Boyd & Richerson. Culture and the evolutionary process. University of Chicago Press, 

1988.

Approach

 Analyses and simulations using evolutionary-game models intended to 

reflect both biological and cultural evolution



Nau: Hawaii, 2010:  9

Evolutionary Simulations

 Evolutionary simulation: a repeated stochastic game whose structure is 

intended to model certain aspects of evolutionary environments

 Consists of a number of stages or generations

 In each stage, there is a set of k agents (k is the total population size) 

 The agents interact in some kind of game-theoretic scenario

 Different agents have different strategies (ways of choosing actions)

 Each agent gets a numeric payoff that’s a stochastic function of the 

strategy profile (the strategies of all the agents)

 The payoffs are used in deciding what the set of agents will be at the next 

stage

Agents at  

stage 1

Agents at  

stage 2

Agents at  

stage 3
…
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Evolutionary Simulations

 Consider the set of all agents that use strategy s

 In a biological setting, s may represent a type of animal

 In a cultural setting, s may represent a learned behavior

 Over time, the number of agents using s may grow or shrink depending 

on how well s performs

 How this happens depends on the reproduction dynamic (next slide)

 At the end of the simulation, s’s reproductive success 

= proportion of agents that use s =  (number of agents that use s) / k ,

where k = total population size

Agents with

strategy s1

Agents with

strategy s2

…

A1 = {agents at stage 1} A2 = {agents at stage 2} A3 = {agents at stage 3}
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Reproduction Dynamics

 The reproduction dynamic is the mechanism for deciding

 which strategies will disappear

 which strategies will reproduce

 how many progeny they’ll have

 Many different

possible

reproduction

dynamics

 I’ll briefly

discuss two

of them

 Later I’ll

generalize

to others
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Reproduction Dynamics

 The reproduction dynamic is the mechanism for deciding

 which strategies will disappear

 which strategies will reproduce

 how many progeny they’ll have

 Many different

possible

reproduction

dynamics

 I’ll briefly

discuss two

of them

• No, not these two!

 Later I’ll

generalize

to others
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Reproduction Dynamics

Replicator dynamic:

 A strategy’s numbers grow or shrink proportionately

to how much better or worse it does than the average

 At stage i, let

• p = proportion of agents that use strategy s

• r = average payoff for those agents

• R = average payoff for all agents

 At stage i+1, the proportion of agents that use s

will be  p (r / R)

 Does well at reflecting growth of animal populations

(where strategy   type of animal)

 Less clear whether or not it’s the best model of economic or cultural behavior

 Thomas Riechmann. Genetic algorithm learning and evolutionary games. 

Journal of Economic Dynamics & Control 25 (2001), 1019–1037
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Reproduction Dynamics

Imitate-the-better dynamic:

 At stage i, let Ai = {all agents at stage i}

 To build Ai+1 , do the following steps k times:

 Randomly choose 2 agents in Ai

 Let a be the one that got the higher payoff

(or choose a at random if both got the same payoff)

 Add to Ai+1 an agent that uses a’s strategy

 A strategy’s numbers grow if it does better than average

 But the growth rate is different than with the

replicator dynamic

 Evidence that this does well at modeling how behaviors spread when 

people copy the behavior of others

 Offerman & Schotter. Imitation and luck: An experimental study on social 

sampling. Games and Economic Behavior 65:2 (2009), 461–502
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A Simple Lottery Game

 A repeated lottery game

 At each stage, agents make choices between two lotteries

 The safe lottery: guaranteed reward of 4

 The risky lottery: P(0) = ½ ; P(8) = ½ 

 Two pure (deterministic) strategies:

 S: always choose the safe lottery

 R: always choose the risky lottery
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Lottery Game, Replicator Dynamic

 At each stage, each strategy’s average payoff is 4

 Thus on average, each strategy’s population size should stay roughly 

constant

 Verified by simulation

for S and R

 We would have gotten

similar results for

any strategy that’s

a mixture of S and R
N

u
m

b
e
r 

o
f 

a
g
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n
ts

Generation
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Lottery Game, Imitate-the-Better Dynamic

 Pick any two agents, and let s and t be their strategies

 Regardless of what s and t are, each agent has equal probability of getting a 

higher payoff than the other

 Again, each strategy’s

population size should

stay roughly constant

 Verified by simulation

for S and R

 Again, we would have 

gotten similar results

for any mixture of

S and R

N
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m

b
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r 
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a
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ts

Generation
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Double Lottery Game

 At each stage, agents make two

rounds of lottery choices

1. Choose between

the safe lottery and

the risky lottery,

get a payoff

2. Choose between

the safe lottery and

the risky lottery 

again, and get an

additional payoff
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Double Lottery Game

There are 6 pure strategies:

 S: choose Safe both times

 SR: 1st time choose Safe 

2nd time choose Risky

 RS: 1st time Risky

2nd time Safe

 R: Risky both times

 RwS: 1st time Risky

 2nd time: if 1st time was

a win (payoff 8), then

Safe, otherwise Risky

 RwR: 1st time Risky

 2nd time: if 1st time was a win (payoff 8),

then Risky, otherwise Safe
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S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

Distribution of Payoffs for Each Strategy

 For every strategy, the 

expected value is 8

 But the distribution of 

payoffs differs

SR RSS R

RwS RwR
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Double Lottery Game, Replicator Dynamic

 At each stage, each strategy’s expected payoff is 8

 Thus on average, each strategy’s population size should stay roughly 

constant

 Verified by simulation

for all 6 strategies

N
u
m

b
e
r 

o
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a
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ts

Generation
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S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

Double Lottery Game,

Imitate-the-Better Dynamic

 For imitate-the-better, do the following k times:

 Choose two agents a and b, and compare their payofs

• Reproduce the one that got a higher payoff

• If they got the same payoff, choose either of them at random

 Suppose a uses S and b uses SR

 P(b gets 4) = ½     =>   a reproduces

 P(b gets 12) = ½   =>   b reproduces

 Thus a and b are equally likely to reproduce

ba
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S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

 Suppose a uses S and b uses RwS

 P(b gets 0)  =  ¼   =>  a reproduces

 P(b gets 8)  =  ¼   =>  a and b equally likely to reproduce

 P(b gets 12) = ½   =>  b reproduces

 Thus

 P(a reproduces) = ¼ + ½ (¼) = 0.375

 P(b reproduces) = ½ + ½ (¼) = 0.625

 RwS dominates S

ba

Double Lottery Game,

Imitate-the-Better Dynamic
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 In general:

 RwS dominates S, R, and RwR

• In a pair where one of the agents uses one of those strategies and the 

other uses RwS, the RwS agent is more likely to reproduce

 For all other pairs of strategies, neither dominates the other

• Both are equally likely to reproduce

Double Lottery Game,

Imitate-the-Better Dynamic

S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Probability 1 ½ ½ ½ ½ ¼ ½ ¼ ½ ¼ ¼ ¼ ¼ ½  

Dominated by RwS



Nau: Hawaii, 2010:  25

 Start with equal numbers of all 6 strategies

 RwS has an advantage whenever it’s paired with S, R, or RwR

 RwS should

increase until

S, R, and RwR

become extinct

 For all other pairs

of strategies, neither

has an advantage

 Once S, R, and

RwR are extinct,

the population

should stabilize

 Verified by simulation  

N
u
m

b
e
r 

o
f 

a
g
e
n
ts

Generation

Double Lottery Game,

Imitate-the-Better Dynamic
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Discussion

 Lots of different possible reproduction dynamics

 The replicator dynamic and the imitate-the-better dynamic are thought to be 

good models of biological and cultural evolution, respectively

 But we’re not sure that either of them is a 100% accurate model,

so let’s look at other reproduction dynamics

 Hypothesis:

 For any reproduction dynamic other than the replicator dynamic, a 

strategy other than utility maximization is likely to do best

 To test this hypothesis, we need to examine

 Other reproduction dynamics

 Games in which the safe and risky lotteries have different expected 

payoffs

 That’s what I’ll discuss next …
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1. Other Reproduction Dynamics

 Imitation dynamics are a parameterized class of reproduction 

dynamics with a parameter 0 ≤ α ≤ 1

[Hofbauer & Sigmund. Evolutionary game dynamics.  Bulletin 

of the American Mathematical Society 40 (2003), 479–519] 

 Case α = 0: imitate-the-better

 Case α = 1: replicator dynamic

 Case 0 < α < 1: in between

 Theorem: For 0 < α < 1, RwS is evolutionarily stable.

 In a population that includes any mixture of RwS and the other 

strategies, RwS will go to 100% and the others will go extinct
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2. Other Expected Payoffs

 For the risky lottery, let

P(8) = p and  P(0) = 1–p

 Expected value is 8p

 Safe lottery’s payoff is still 4

SR RS

S SR RS R RwS RwR

Payoff 8 12 4 12 4 16 8 0 12 8 0 16 8 4

Prob. 1 p 1–p p 1–p p2 2p(1–p) (1–p)2 p p(1–p) (1–p)2 p2 p(1–p) 1–p

S R

RwS RwR
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Double Lottery Game

 For all values of p and α, compare RwS to S and R

S dominates RwS;
RwS dominates R

R dominates RwS; 
RwS dominates S

RwS dominates
both S and R

Imitate-the-
better dynamic

Replicator 
dynamic
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More Complex Interactions

 In the lottery games, each agent’s payoff depended only on its own choices 

 What about situations in which the agents interact?

 Instead of lotteries, use non-zero-sum games

 We used

the Stag

Hunt

Prisoner’s Dilemma Ultimatum GameRoshambo
Battle of

the Sexes

Matching Pennies

Stag Hunt

Chicken Game
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Hunter 2

Hunter 1

Stag 

(risky)

Hare 

(safe)

Stag (risky) 8, 8 0, 4

Hare (safe) 4, 0 4, 4

Stag Hunt

Stag Hunt

 Simple model of a situation where

one must decide whether to work

alone or cooperate with others

 Two hunters, each hunting for food

 Hunting for hare: solitary activity

 Small payoff (4), but safe:

• Same payoff, regardless of

what the other hunter does

 Hunting for stag: cooperative activity

 Possibility of a much bigger payoff (8), but risky:

• Payoff = 8 only if the other hunter cooperates

 In an evolutionary game setting, P(payoff = 8)

depends on the relative proportions of stag hunters

and hare hunters at stage i

Nash equilibria
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Evolutionary Double Stag Hunt

 Instead of two lotteries at each stage,

have two Stag Hunt games

 Randomly divide the agents into pairs, 

• Each pair plays Stag Hunt

 Randomly divide the agents

into pairs again

• Each pair plays another Stag Hunt

 6 pure strategies (by analogy with the double lottery game)

 But initially we’ll just be interested in two of them

 Stag: hunt stag both times (like the R strategy in the double lottery game)

 Hare: hunt hare both times (like the S strategy)

 Consider the case where every agent uses either Stag or Hare

Hunter 2

Hunter 1

Stag 

(risky)

Hare 

(safe)

Stag (risky) 8, 8 0, 4

Hare (safe) 4, 0 4, 4

Stag Hunt
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Evolutionary Double Stag Hunt

 Let pi = proportion of Stag agents at stage i

 Payoff for Hare is  4 + 4 = 8, regardless

of the other players’ strategies

 Payoff distribution for Stag:

 P(play against Stag twice) = pi
2          

=>  payoff = 8 + 8 = 16

 P(play against Hare twice)  = (1–pi)
2

=>  payoff = 0

 P(play once against each) = 2pi (1–pi)    

=>  payoff = 0 + 8 = 8

 Same formulas as for the double lottery, but with pi instead of p

 Amount of risk depends on how many agents of each type at stage i

 Examine what happens with replicator and imitate-the-better dynamics

Hare Stag

Payoff 8 16 8 0

Prob. 1 pi
2 2pi (1–pi) (1–pi)

2

Hunter 2

Hunter 1

Stag 

(risky)

Hare 

(safe)

Stag (risky) 8, 8 0, 4

Hare (safe) 4, 0 4, 4

Stag Hunt

Double Stag Hunt
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Replicator Dynamic

 Proportion of Stag agents at stage i+1 is

 pi+1 = pi si / Ri

 where

• si = Stag’s average payoff   =  16 pi
2 + 16 pi (1–pi) + 0 (1–pi)

2 =  16 pi

• Ri = average payoff for all agents  =  (pi si + 8(1-pi))  =  16 pi
2 –8 pi + 8 

 Thus pi+1 = 16pi
2 / (16pi

2 – 8 pi + 8)

• If p1 = ½, then pi = ½ for all i (more about this later)

• If p1 < ½, then pi 0

• If p1 > ½, then  pi 1

 Larger group gets a bigger average payoff

=>       group grows         even bigger

even larger           avg. payoff

Hare Stag

Payoff 8 16 8 0

Prob. 1 pi
2 2pi (1–pi) (1–pi)

2

pi+1

1 – pi+1

pi
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Replicator Dynamic (continued)

 On the previous slide, I said

• If p1 = ½, then pi = ½ for all i

 That neglects the effects of random variation

 Random variation  =>  eventually we’ll get a stage j for which pj ≠ ½

• If pj < ½, then pi 0

• If pj > ½, then  pi 1

 pi 0 and  pi 1 are equally likely

 Confirmed by simulation:

 200 simulation runs, each starting

with 3000 Stag and 3000 Hare

• 101 runs converged to 100% Stag

• 99 runs converged to 100% Hare

pi+1

1 – pi+1

pi
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pi

pi+1

1 – pi+1

Imitate-the-Better Dynamic

 Compare pairs of randomly chosen agents

 Reproduce the one with the higher payoff

 Same payoff => probability ½ for each

 pi+1 = P(Stag vs Stag) • 1 + P(Hare vs Hare) • 0

+ P(Stag vs Hare) [P(Stag’s payoff is 16) + ½ P(Stag’s payoff is 8)]

= pi
2 + 2pi (1–pi) [pi

2 + pi (1–pi)] = 3 pi
2 – 2pi

3

 Outcome similar to before:

• If p1 > ½, then  pj 1

• If p1 < ½, then pj 0

• If p1 = ½  then  pi = ½ for all i (neglecting random variation)

› Random variation => pi 0 or  pi 1, each equally likely

 Simulation results similar to before:

• 101 runs converged to Stag, 99 converged to Hare

Hare Stag

Payoff 8 16 8 0

Prob. 1 pi
2 2pi (1–pi) (1–pi)

2
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Double Stag Hunt with RwS

 In the Double Stag Hunt, RwS does conditional cooperation

 1st time: hunt stag (risky choice)

 2nd time: If payoff was 8 (other hunter cooperated) the 1st time,

• then hunt hare (safe)

• otherwise hunt stag (risky)

 Suppose we start with equal numbers of Stag and Hare agents, and a very

small number of RwS agents

 Would anyone care to guess what will happen?
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Stag, Hare, and RwS

 200 simulation runs, starting with 3000 Stag agents, 3000 Hare agents, 

30 RwS agents

 Didn’t converge to RwS

 With the replicator dynamic, RwS made convergence to Stag slightly 

more likely

 With the imitate-the-better dynamic, RwS made convergence to Stag

much more likely

Without RwS With 30 RwS

Replicator Imitate-the-better Replicator Imitate-the-better

Converge to Stag 101 101 110 138

Converge to Hare 99 99 90 62

Converge to RwS ––– ––– 0 0
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RwS Catalyzes Growth of Stag

 The following effect occurs with both the replicator dynamic and the 

imitate-the-better dynamic:

 In the 1st stag hunt, RwS plays Stag

• Slightly increases the Stag strategy’s payoff

 In the 2nd stag hunt

• Nearly equal probabilities that RwS won or lost the 1st stag hunt

• => nearly equal probabilities that it will play Stag or Hare

• => not much effect on the Stag strategy’s payoff

 Overall, a slight advantage for Stag

• => slightly more likely to converge to Stag
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RwS Catalyzes Growth of Stag

 With the imitate-the-better dynamic, RwS has another, stronger effect

 Initially, equal numbers of Stag and Hare

=> RwS has an advantage over Hare (like RwS and S in the double lottery)

=>  RwS agents increase, Hare agents decrease

 But fewer Hare

=> Stag gets higher payoffs

=> Stag agents increase

=> Stag gets even higher

payoffs

 Eventually Stag has

an advantage over

both RwS and Hare

=> converge to all Stag; 

RwS and Hare

both go extinct
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Conclusion

 Initial steps in exploring risk preferences through evolutionary games 

 Double lottery game

 Analogy between RwS’s behavior (conditional risk-taking)

and human risk preferences

 With all imitation dynamics except the replicator dynamic, RwS has an 

evolutionary advantage

 This suggests a possible reason why state-dependent risk preferences 

might spread

• But certainly not the only one, and we want to explore others

 Double stag hunt game

 Example of how to extend our results to games of social cooperation

 Conditional cooperation (RwS) promoted the evolution of cooperation 

(Stag) in a situation where cooperating required a risky decision

• RwS did this more strongly with the imitate-the-better dynamic
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 How to reach me

 Dana Nau, nau@cs.umd.edu

 http://www.cs.umd.edu/users/nau

 Publications based on this work:

 P. Roos and D. Nau. Conditionally risky behavior vs expected value maximization in 

evolutionary games. In Sixth Conference of the European Social Simulation 

Association (ESSA 2009), Sept. 2009. 

 P. Roos and D. S. Nau. State-dependent risk preferences in evolutionary games. In 

Chai, Salerno, and Mabry, editors, Advances in Social Computing: Third 

International Conference on Social Computing, Behavioral Modeling, and 

Prediction, SBP 2010, volume LNCS 6007, pp. 23–31. Springer, Mar. 2010.

 P. Roos and D. Nau. Risk preference and sequential choice in evolutionary games. 

Advances in Complex Systems, 2010 (to appear).

 P. Roos, R. Carr, and D. Nau. Evolution of state-dependent risk preferences. 

Submitted for journal publication.

Thank you! Any Questions?
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