
A Web of Opinions
Sentiment Analysis in the Context of Online Communities

Bo Pang



Sentiment analysis / Opinion mining

• What we do: computational treatment of opinion, 
sentiment, and subjectivity in text

• SA at large: emotions, viewpoints, personal experience, ...

• Massive amount of opinion-oriented information online

• review sites, forums, blogs, facebook status, tweets, ...

• reviews, political discourse, ...

• Who cares?

• researchers in natural language processing, information 
retrieval, data mining, ...



The importance of what strangers think

• 24% report using online reviews prior to paying for a 
service delivered offline

• between 73% and 87% online review readers report that 
reviews had a significant influence on their purchase;

• 32% have provided a rating; 30% have posted an online 
comment or a review 
[comScore ’07; Horrigan Pew survey ’08] 

According to two surveys of more than 2000 users each

How to automatically analyze such information? 
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Example: “get out the vote”

• individual-document classifier (difficult)

• agreement classifier provides the “strength” of how likely 
two speakers agree with each other

• optimization problem: minimize

 [Thomas, Pang, & Lee ’06]

Classify Congressional floor debates: support or oppose?

Graph-partitioning formulation



support

oppose

individual-document classifier

 [Thomas, Pang, & Lee ’06]
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 [Thomas, Pang, & Lee ’06]
Held-out accuracy: 70%  76% 

support
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whose opinion
about what



Graphic by Bill Marsh for The New York Times, 
October 1, 2005, depicting negative opinions of 
various entities towards each other in the 
aftermath of Hurricane Katrina.

(it could get much more complicated ...)





if we only care about 
a few objects, things 

could be easier...



A quick digression: the long tail

• The tail is long: majority of products are “misses”

• In aggregate they account for a sizable fraction of total 
consumption; but much smaller compared to the head

• Who’s consuming the tail?  A few eccentric people?

Chris Anderson.  The long tail.  Wired Magazine, 2004

product not available in offline retail stores



Ordinary people with extraordinary tastes

• 90% of Netflix users and 95% of Yahoo! Music users have consumed tail items

• 35% of Netflix users and 70% of Yahoo! Music users regularly do so

 [Goel, Broder, Gabrilovich, & Pang ʼ10]

Nearly everyone is at least a bit eccentric 

(movies, music, web search, and web browsing)

Understanding tail content is critical!





Are all users 
created equal?





No

• Utilizing user profiles                                                      
[Danescu-Niculescu-Mizil, Kossinets, Kleinberg, & Lee ’09]

• using “real name”

• Utilizing social network [Lu, Tsaparas, Ntoulas, & Polanyi ’10] 

• explicit “trust” relation given by reviewers

• can we predict trust?

• Worse than bad: review spam [Jindal & Liu ’08]

We need to figure out the “helpful” ones



Yes, everyone counts!

• Sampling bias?
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Anonymity: a double-edged sword

• Anonymity makes it more difficult to effectively consume 
opinions

• it matters whose opinion it is

• Anonymity allows people to express their opinions more 
freely

• this, in itself, can be good or bad

• Actually, hardly anyone is completely anonymous...
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• Given a sequence of queries issued by a given user + a 
simpler classifier, can we predict demographic info?

• gender: accuracy 83.8%

• age: avg. absolute error 7 years

• Vanity search

• given a name, rank all the users who issued the name (modified tf/idf ), 85% 
of the correct user rank at 1

[Jones, Kumar, Pang, & Tomkins ’07, ’08]

fanfiction, bridal, makeup, women’s, knitting, hair, ecards, glitter, yoga, diet     
nfl, poker, espn, ufc, railroad, prostate, football, golf, male, wrestling, compusa

myspace, pregnancy, wikipedia, lyrics, quotes, apartments, torrent, baby, wedding, mall    
aarp, telephone, lottery, amazon.com, retirement, funeral, senior, mapquest, medicare,



Anonymity: privacy concerns vs. utility

• You are what you search for [Jones, Kumar, Pang, & Tomkins ’07, ’08]

• You are what you write [Novak, Raghavan, & Tomkins ’04]

• You are who you connect to [Backstrom, Dwork, & Kleinberg ’07]

• You are the movies you watch [Narayanan & Shmatikov ’08] ...

Wherefore art thou r3579x?: anonymized social networks, hidden 
patterns, and structural steganography

http://portal.acm.org/citation.cfm?id=1242572.1242598
http://portal.acm.org/citation.cfm?id=1242572.1242598
http://portal.acm.org/citation.cfm?id=1242572.1242598
http://portal.acm.org/citation.cfm?id=1242572.1242598
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THE END (almost)

• The Web provides interesting raw data

• easily reach out to opinions of millions of people

• with intricate relationships 

• Well,  it’s kind of messy...

• But that’s great -- challenge is opportunity!



More on applications, research directions, connections to 
other fields, ...

Opinion Mining and Sentiment Analysis 
Bo Pang and Lillian Lee 
www.cs.cornell.edu/home/llee/opinion-mining-sentiment-analysis-survey.html 

135 pp, 330+ references, full pdf posted
Includes bibliographies, pointers to datasets, etc.

http://www.cs.cornell.edu/home/llee/opinion-mining-sentiment-analysis-survey.html
http://www.cs.cornell.edu/home/llee/opinion-mining-sentiment-analysis-survey.html

